test_LennardJones.cpp 6.04 KiB
/**
* Demonstration of how to specify your own EOS at runtime. In this case,
* the EOS of Monika Thol and colleagues: https://doi.org/10.1063/1.4945000
*/
#include "teqp/models/multifluid.hpp"
#include "teqp/derivs.hpp"
#include "teqp/json_builder.hpp"
#include <array>
std::string contents = R"(
{
"EOS": [
{
"BibTeX_CP0": "",
"BibTeX_EOS": "Thol-THESIS-2015",
"STATES": {
"reducing": {
"T": 1.32,
"T_units": "LJ units",
"rhomolar": 0.31,
"rhomolar_units": "LJ units"
}
},
"T_max": 1200,
"T_max_units": "LJ units",
"Ttriple": 290.25,
"Ttriple_units": "LJ units",
"alphar": [
{
"d": [4, 1, 1, 2, 2, 3, 1, 1, 3, 2, 2, 5],
"l": [0, 0, 0, 0, 0, 0, 1, 2, 2, 1, 2, 1],
"n": [0.52080730e-2, 0.21862520e+1, -0.21610160e+1, 0.14527000e+1, -0.20417920e+1, 0.18695286e+0, -0.62086250e+0, -0.56883900e+0, -0.80055922e+0, 0.10901431e+0, -0.49745610e+0, -0.90988445e-1],
"t": [1.000, 0.320, 0.505, 0.672, 0.843, 0.898, 1.205, 1.786, 2.770, 1.786, 2.590, 1.294],
"type": "ResidualHelmholtzPower"
},
{
"beta": [0.625, 0.638, 3.91, 0.156, 0.157, 0.153, 1.16, 1.73, 383, 0.112, 0.119],
"d": [1, 1, 2, 3, 3, 2, 1, 2, 3, 1, 1],
"epsilon": [ 0.2053, 0.409, 0.6, 1.203, 1.829, 1.397, 1.39, 0.539, 0.934, 2.369, 2.43],
"eta": [2.067, 1.522, 8.82, 1.722, 0.679, 1.883, 3.925, 2.461, 28.2, 0.753, 0.82],
"gamma": [0.71, 0.86, 1.94, 1.48, 1.49, 1.945, 3.02, 1.11, 1.17, 1.33, 0.24],
"n": [-0.14667177e+1, 0.18914690e+1, -0.13837010e+0, -0.38696450e+0, 0.12657020e+0, 0.60578100e+0, 0.11791890e+1, -0.47732679e+0, -0.99218575e-1, -0.57479320e+0, 0.37729230e-2],
"t": [2.830, 2.548, 4.650, 1.385, 1.460, 1.351, 0.660, 1.496, 1.830, 1.616, 4.970],
"type": "ResidualHelmholtzGaussian"
}
],
"gas_constant": 1.0,
"gas_constant_units": "LJ units",
"molar_mass": 1.0,
"molar_mass_units": "LJ units",
"p_max": 100000,
"p_max_units": "LJ units",
"pseudo_pure": false
}
],
"INFO":{
"NAME": "LennardJones",
"REFPROP_NAME": "LJF",
"CAS": "N/A"
}
}
)";
int main() {
std::vector <std::string> componentJSON = { contents };
auto model = teqp::build_multifluid_JSONstr(componentJSON, "{}", "{}");
// Test values from https://aip.scitation.org/doi/suppl/10.1063/1.4945000/suppl_file/additional_information_ljf.pdf
std::vector<std::array<double, 7> > data = {
{0.8, 0.005, 3.8430053e-3, -5.4597389e-2, 5.5672903e-2, 1.1324263e0, 2.7768170e-1},
{0.8, 0.8, 1.5894013e-2, -5.7174120e0, 9.5995160e-1, 5.0522400e0, 1.1838093e0},
{1.0, 0.02, 1.7886470e-2, -1.8772644e-1, 1.3016045e-1, 1.2290934e0, 1.8318141e0},
{1.0, 0.71, 7.5247483e-2, -4.9564222e0, 6.8903536e-1, 4.1644650e0, 2.9792860e0},
{2.0, 0.5, 1.0751638e0, -3.1525021e0, 3.1068090e-1, 3.5186329e0, 9.5274193e0},
{5.0, 0.6, 6.9432008e0, -2.6956781e0, 3.1772707e-1, 6.8375197e0, 2.6122755e1},
{7.0, 1.0, 4.1531352e1, -6.2393078e-1, 7.3348579e-1, 1.4201978e1, 4.8074394e-1},
};
std::valarray<double> z(1.0, 1);
std::cout << "**************** With general JSON interface **************" << std::endl;
std::cout << "All in L-J units:" << std::endl;
{
constexpr int errmsg_length = 300;
char uuid[33] = "", errmsg[errmsg_length] = "";
double val = -1, Ar01, Ar00;
auto molefrac = (Eigen::ArrayXd(1) << 1.0).finished();
nlohmann::json jmodel = nlohmann::json::object();
jmodel["components"] = nlohmann::json::array();
jmodel["components"].push_back(nlohmann::json::parse(contents));
jmodel["departure"] = nlohmann::json::array();
jmodel["BIP"] = nlohmann::json::array();
jmodel["flags"] = nlohmann::json::object();
nlohmann::json j = {
{"kind", "multifluid"},
{"model", jmodel}
};
auto m = teqp::build_model(j);
for (auto& el : data) {
auto [T_, rho_, p, ur, cvr, w, a] = el;
double T = T_, rho = rho_; // It is not possible to capture tuple-unpacked variables
auto NT = 0, ND = 0;
// Lambda function to extract the given derivative from the thing contained in the variant
auto f = [&](const auto& model) {
using tdx = teqp::TDXDerivatives<decltype(model), double, decltype(molefrac)>;
return tdx::get_Ar(NT, ND, model, T, rho, molefrac);
};
// Now call the visitor function to get the value
auto Ar00 = std::visit(f, m);
NT = 0; ND = 1; auto Ar01 = std::visit(f, m);
NT = 1; ND = 0; auto Ar10 = std::visit(f, m);
NT = 2; ND = 0; auto Ar20 = std::visit(f, m);
double pcalc = T * rho * (1 + Ar01);
double urcalc = T * Ar10;
double cvrcalc = -Ar20;
std::cout << "@ (T,rho): " << T << "," << rho << std::endl;
std::cout << "p: " << pcalc << ", " << p << std::endl;
std::cout << "ur: " << urcalc << ", " << ur << std::endl;
std::cout << "cvr: " << cvrcalc << ", " << cvr << std::endl;
}
}
std::cout << "**************** With normal interface **************" << std::endl;
using tdx = teqp::TDXDerivatives<decltype(model), double, decltype(z)>;
std::cout << "All in L-J units:" << std::endl;
for (auto &el : data) {
auto [T, rho, p, ur, cvr, w, a] = el; // I
double Ar01 = tdx::get_Ar01(model, T, rho, z);
double Ar10 = tdx::get_Ar10(model, T, rho, z);
double Ar20 = tdx::get_Ar20(model, T, rho, z);
double pcalc = T*rho*(1 + Ar01);
double urcalc = T*Ar10;
double cvrcalc = -Ar20;
std::cout << "@ (T,rho): " << T << "," << rho << std::endl;
std::cout << "p: " << pcalc << ", " << p << std::endl;
std::cout << "ur: " << urcalc << ", " << ur << std::endl;
std::cout << "cvr: " << cvrcalc << ", " << cvr << std::endl;
}
}