Newer
Older
#pragma once
Ian Bell
committed
#include <string>
Ian Bell
committed
#include <optional>
#include "teqp/types.hpp"
#include "MultiComplex/MultiComplex.hpp"
// See https://eigen.tuxfamily.org/dox/TopicCustomizing_CustomScalar.html
namespace Eigen {
template<typename TN> struct NumTraits<mcx::MultiComplex<TN>> : NumTraits<double> // permits to get the epsilon, dummy_precision, lowest, highest functions
{
enum {
IsComplex = 1,
IsInteger = 0,
IsSigned = 1,
RequireInitialization = 1,
ReadCost = 1,
AddCost = 3,
MulCost = 3
};
};
}
template<typename EOSCollection>
class CorrespondingStatesContribution {
private:
const EOSCollection EOSs;
public:
CorrespondingStatesContribution(EOSCollection&& EOSs) : EOSs(EOSs) {};
template<typename TauType, typename DeltaType, typename MoleFractions>
auto alphar(const TauType& tau, const DeltaType& delta, const MoleFractions& molefracs) const {
using resulttype = std::common_type_t<decltype(tau), decltype(molefracs[0]), decltype(delta)>; // Type promotion, without the const-ness
resulttype alphar = 0.0;
auto N = molefracs.size();
for (auto i = 0; i < N; ++i) {
alphar = alphar + molefracs[i] * EOSs[i].alphar(tau, delta);
}
return alphar;
}
};
template<typename FCollection, typename DepartureFunctionCollection>
class DepartureContribution {
private:
const FCollection F;
const DepartureFunctionCollection funcs;
public:
DepartureContribution(FCollection&& F, DepartureFunctionCollection&& funcs) : F(F), funcs(funcs) {};
template<typename TauType, typename DeltaType, typename MoleFractions>
auto alphar(const TauType& tau, const DeltaType& delta, const MoleFractions& molefracs) const {
using resulttype = std::common_type_t<decltype(tau), decltype(molefracs[0]), decltype(delta)>; // Type promotion, without the const-ness
resulttype alphar = 0.0;
auto N = molefracs.size();
for (auto i = 0; i < N; ++i) {
Ian Bell
committed
for (auto j = i+1; j < N; ++j) {
alphar = alphar + molefracs[i] * molefracs[j] * F(i, j) * funcs[i][j].alphar(tau, delta);
}
}
return alphar;
}
};
template<typename ReducingFunction, typename CorrespondingTerm, typename DepartureTerm>
const ReducingFunction redfunc;
const CorrespondingTerm corr;
const DepartureTerm dep;
template<class VecType>
auto R(const VecType& molefrac) const {
return get_R_gas<decltype(molefrac[0])>();
}
MultiFluid(ReducingFunction&& redfunc, CorrespondingTerm&& corr, DepartureTerm&& dep) : redfunc(redfunc), corr(corr), dep(dep) {};
template<typename TType, typename RhoType>
auto alphar(TType T,
const RhoType& rhovec,
const std::optional<typename RhoType::value_type> rhotot = std::nullopt) const
{
typename RhoType::value_type rhotot_ = (rhotot.has_value()) ? rhotot.value() : std::accumulate(std::begin(rhovec), std::end(rhovec), (decltype(rhovec[0]))0.0);
auto molefrac = rhovec / rhotot_;
return alphar(T, rhotot_, molefrac);
}
template<typename TType, typename RhoType, typename MoleFracType>
Ian Bell
committed
auto alphar(const TType &T,
const RhoType &rho,
const MoleFracType& molefrac) const
{
auto Tred = forceeval(redfunc.get_Tr(molefrac));
auto rhored = forceeval(redfunc.get_rhor(molefrac));
auto delta = forceeval(rho / rhored);
auto tau = forceeval(Tred / T);
auto val = corr.alphar(tau, delta, molefrac) + dep.alphar(tau, delta, molefrac);
return forceeval(val);
}
};
auto cube(Num x) const {
return x*x*x;
}
template <typename Num>
auto square(Num x) const {
return x*x;
const Eigen::MatrixXd betaT, gammaT, betaV, gammaV;
const Eigen::ArrayXd Tc, vc;
template<typename ArrayLike>
MultiFluidReducingFunction(
const Eigen::MatrixXd& betaT, const Eigen::MatrixXd& gammaT,
const Eigen::MatrixXd& betaV, const Eigen::MatrixXd& gammaV,
const ArrayLike& Tc, const ArrayLike& vc)
: betaT(betaT), gammaT(gammaT), betaV(betaV), gammaV(gammaV), Tc(Tc), vc(vc) {
auto N = Tc.size();
YT.resize(N, N); YT.setZero();
Yv.resize(N, N); Yv.setZero();
for (auto i = 0; i < N; ++i) {
for (auto j = i + 1; j < N; ++j) {
YT(i, j) = betaT(i, j) * gammaT(i, j) * sqrt(Tc[i] * Tc[j]);
YT(j, i) = betaT(j, i) * gammaT(j, i) * sqrt(Tc[i] * Tc[j]);
Yv(i, j) = 1.0 / 8.0 * betaV(i, j) * gammaV(i, j) * cube(cbrt(vc[i]) + cbrt(vc[j]));
Yv(j, i) = 1.0 / 8.0 * betaV(j, i) * gammaV(j, i) * cube(cbrt(vc[i]) + cbrt(vc[j]));
}
}
}
template <typename MoleFractions>
auto Y(const MoleFractions& z, const Eigen::ArrayXd& Yc, const Eigen::MatrixXd& beta, const Eigen::MatrixXd& Yij) const {
Ian Bell
committed
for (auto i = 0; i < N; ++i) {
for (auto i = 0; i < N-1; ++i){
for (auto j = i+1; j < N; ++j) {
sum2 = sum2 + 2.0*z[i]*z[j]*(z[i] + z[j])/(square(beta(i, j))*z[i] + z[j])*Yij(i, j);
static auto get_BIPdep(const nlohmann::json& collection, const std::vector<std::string>& components, const nlohmann::json& flags) {
if (flags.contains("estimate")) {
return nlohmann::json({
{"betaT", 1.0}, {"gammaT", 1.0}, {"betaV", 1.0}, {"gammaV", 1.0}, {"F", 0.0}
});
}
Ian Bell
committed
// convert string to upper case
auto toupper = [](const std::string s){ auto data = s; std::for_each(data.begin(), data.end(), [](char& c) { c = ::toupper(c); }); return data;};
std::string comp0 = toupper(components[0]);
std::string comp1 = toupper(components[1]);
Ian Bell
committed
std::string name1 = toupper(el["Name1"]);
std::string name2 = toupper(el["Name2"]);
if (comp0 == name1 && comp1 == name2) {
Ian Bell
committed
if (comp0 == name2 && comp1 == name1) {
Ian Bell
committed
throw std::invalid_argument("Can't match this binary pair");
static auto get_binary_interaction_double(const nlohmann::json& collection, const std::vector<std::string>& components, const nlohmann::json& flags) {
auto el = get_BIPdep(collection, components, flags);
double betaT = el["betaT"], gammaT = el["gammaT"], betaV = el["betaV"], gammaV = el["gammaV"];
// Backwards order of components, flip beta values
if (components[0] == el["Name2"] && components[1] == el["Name1"]) {
betaT = 1.0 / betaT;
betaV = 1.0 / betaV;
}
return std::make_tuple(betaT, gammaT, betaV, gammaV);
}
static auto get_BIP_matrices(const nlohmann::json& collection, const std::vector<std::string>& components, const nlohmann::json& flags) {
Eigen::MatrixXd betaT, gammaT, betaV, gammaV, YT, Yv;
auto N = components.size();
betaT.resize(N, N); betaT.setZero();
gammaT.resize(N, N); gammaT.setZero();
betaV.resize(N, N); betaV.setZero();
gammaV.resize(N, N); gammaV.setZero();
for (auto i = 0; i < N; ++i) {
for (auto j = i + 1; j < N; ++j) {
auto [betaT_, gammaT_, betaV_, gammaV_] = get_binary_interaction_double(collection, { components[i], components[j] }, flags);
betaT(i, j) = betaT_; betaT(j, i) = 1.0 / betaT(i, j);
gammaT(i, j) = gammaT_; gammaT(j, i) = gammaT(i, j);
betaV(i, j) = betaV_; betaV(j, i) = 1.0 / betaV(i, j);
gammaV(i, j) = gammaV_; gammaV(j, i) = gammaV(i, j);
}
}
return std::make_tuple(betaT, gammaT, betaV, gammaV);
}
static auto get_Tcvc(const std::string& coolprop_root, const std::vector<std::string>& components) {
Eigen::ArrayXd Tc(components.size()), vc(components.size());
std::string path = coolprop_root + "/dev/fluids/" + c + ".json";
std::ifstream ifs(path);
if (!ifs) {
throw std::invalid_argument("Load path is invalid: " + path);
}
auto j = json::parse(ifs);
auto red = j["EOS"][0]["STATES"]["reducing"];
double Tc_ = red["T"];
double rhoc_ = red["rhomolar"];
static auto get_F_matrix(const nlohmann::json& collection, const std::vector<std::string>& components, const nlohmann::json& flags) {
Eigen::MatrixXd F(components.size(), components.size());
auto N = components.size();
for (auto i = 0; i < N; ++i) {
F(i, i) = 0.0;
for (auto j = i + 1; j < N; ++j) {
auto el = get_BIPdep(collection, { components[i], components[j] }, flags);
Ian Bell
committed
if (el.empty()) {
F(i, j) = 0.0;
F(j, i) = 0.0;
}
else{
F(i, j) = el["F"];
F(j, i) = el["F"];
}
template<typename MoleFractions> auto get_Tr(const MoleFractions& molefracs) const { return Y(molefracs, Tc, betaT, YT); }
template<typename MoleFractions> auto get_rhor(const MoleFractions& molefracs) const { return 1.0 / Y(molefracs, vc, betaV, Yv); }
Ian Bell
committed
class MultiFluidDepartureFunction {
public:
enum class types { NOTSETTYPE, GERG2004, GaussianExponential, NoDeparture };
Ian Bell
committed
private:
types type = types::NOTSETTYPE;
public:
Eigen::ArrayXd n, t, d, c, l, eta, beta, gamma, epsilon;
void set_type(const std::string& kind) {
if (kind == "GERG-2004" || kind == "GERG-2008") {
type = types::GERG2004;
}
else if (kind == "Gaussian+Exponential") {
type = types::GaussianExponential;
}
else if (kind == "none") {
type = types::NoDeparture;
}
Ian Bell
committed
else {
throw std::invalid_argument("Bad type:" + kind);
}
}
template<typename TauType, typename DeltaType>
auto alphar(const TauType& tau, const DeltaType& delta) const {
switch (type) {
case (types::GaussianExponential):
return forceeval((n * exp(t*log(tau) + d*log(delta)-c*pow(delta, l)-eta * (delta - epsilon).square() - beta * (tau - gamma).square())).sum());
Ian Bell
committed
case (types::GERG2004):
return forceeval((n * exp(t*log(tau) + d*log(delta) -eta * (delta - epsilon).square() - beta * (delta - gamma))).sum());
return forceeval(0.0*(tau*delta));
Ian Bell
committed
default:
throw - 1;
}
}
};
Ian Bell
committed
inline auto get_departure_function_matrix(const std::string& coolprop_root, const nlohmann::json& BIPcollection, const std::vector<std::string>& components, const nlohmann::json& flags) {
Ian Bell
committed
// Allocate the matrix with default models
std::vector<std::vector<MultiFluidDepartureFunction>> funcs(components.size()); for (auto i = 0; i < funcs.size(); ++i) { funcs[i].resize(funcs.size()); }
Ian Bell
committed
auto depcollection = nlohmann::json::parse(std::ifstream(coolprop_root + "/dev/mixtures/mixture_departure_functions.json"));
auto get_departure_function = [&depcollection](const std::string& Name) {
for (auto& el : depcollection) {
if (el["Name"] == Name) { return el; }
}
throw std::invalid_argument("Bad argument");
};
for (auto i = 0; i < funcs.size(); ++i) {
for (auto j = i + 1; j < funcs.size(); ++j) {
auto BIP = MultiFluidReducingFunction::get_BIPdep(BIPcollection, { components[i], components[j] }, flags);
Ian Bell
committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
auto function = BIP["function"];
if (!function.empty()) {
auto info = get_departure_function(function);
auto N = info["n"].size();
auto toeig = [](const std::vector<double>& v) -> Eigen::ArrayXd { return Eigen::Map<const Eigen::ArrayXd>(&(v[0]), v.size()); };
auto eigorempty = [&info, &toeig, &N](const std::string& name) -> Eigen::ArrayXd {
if (!info[name].empty()) {
return toeig(info[name]);
}
else {
return Eigen::ArrayXd::Zero(N);
}
};
MultiFluidDepartureFunction f;
f.set_type(info["type"]);
f.n = toeig(info["n"]);
f.t = toeig(info["t"]);
f.d = toeig(info["d"]);
f.eta = eigorempty("eta");
f.beta = eigorempty("beta");
f.gamma = eigorempty("gamma");
f.epsilon = eigorempty("epsilon");
Eigen::ArrayXd c(f.n.size()), l(f.n.size()); c.setZero();
if (info["l"].empty()) {
// exponential part not included
l.setZero();
}
else {
l = toeig(info["l"]);
// l is included, use it to build c; c_i = 1 if l_i > 0, zero otherwise
for (auto i = 0; i < c.size(); ++i) {
if (l[i] > 0) {
c[i] = 1.0;
}
}
}
f.l = l;
f.c = c;
funcs[i][j] = f;
funcs[j][i] = f;
int rr = 0;
}
else {
MultiFluidDepartureFunction f;
f.set_type("none");
funcs[i][j] = f;
funcs[j][i] = f;
}
Ian Bell
committed
}
}
return funcs;
}
Ian Bell
committed
/// From Ulrich Deiters
template <typename T> // arbitrary integer power
T powi(const T& x, int n) {
if (n == 0)
return static_cast<T>(1.0); // x^0 = 1 even for x == 0
else if (n < 0){
using namespace autodiff::detail;
if constexpr (isDual<T> || isExpr<T>) {
return eval(powi(eval(1.0/x), -n));
}
else {
return powi(static_cast<T>(1.0) / x, -n);
}
}
Ian Bell
committed
else {
T y(x), xpwr(x);
n--;
while (n > 0) {
if (n % 2 == 1) {
y = y*xpwr;
n--;
}
xpwr = xpwr*xpwr;
n /= 2;
}
return y;
}
}
template<typename T>
inline auto powIVi(const T& x, const Eigen::ArrayXi& e) {
//return e.binaryExpr(e.cast<T>(), [&x](const auto&& a_, const auto& e_) {return static_cast<T>(powi(x, a_)); });
static Eigen::Array<T, Eigen::Dynamic, 1> o;
o.resize(e.size());
Ian Bell
committed
for (auto i = 0; i < e.size(); ++i) {
o[i] = powi(x, e[i]);
Ian Bell
committed
}
return o;
//return e.cast<T>().unaryExpr([&x](const auto& e_) {return powi(x, e_); }).eval();
Ian Bell
committed
}
//template<typename T>
//auto powIV(const T& x, const Eigen::ArrayXd& e) {
// Eigen::Array<T, Eigen::Dynamic, 1> o = e.cast<T>();
// return o.unaryExpr([&x](const auto& e_) {return powi(x, e_); } ).eval();
//}
template<typename T>
auto pow(const std::complex<T> &x, const Eigen::ArrayXd& e) {
Eigen::Array<std::complex<T>, Eigen::Dynamic, 1> o(e.size());
for (auto i = 0; i < e.size(); ++i) {
o[i] = pow(x, e[i]);
}
return o;
}
template<typename T>
auto pow(const mcx::MultiComplex<T> &x, const Eigen::ArrayXd& e) {
Eigen::Array<mcx::MultiComplex<T>, Eigen::Dynamic, 1> o(e.size());
for (auto i = 0; i < e.size(); ++i) {
o[i] = pow(x, e[i]);
}
return o;
}
Ian Bell
committed
template<class T>
struct PowIUnaryFunctor {
const T m_base;
PowIUnaryFunctor(T base) : m_base(base) {};
typedef T result_type;
result_type operator()(const int& e) const{
switch (e) {
case 0:
return 1.0;
case 1:
return m_base;
case 2:
return m_base * m_base;
default:
return powi(m_base, e);
}
}
};
Ian Bell
committed
class MultiFluidEOS {
public:
enum class types { NOTSETTYPE, GERG2004, GaussianExponential, GaussianExponentialNonAnalytic };
Ian Bell
committed
private:
types type = types::NOTSETTYPE;
public:
Eigen::ArrayXd n, t, d, c, l, eta, beta, gamma, epsilon;
Eigen::ArrayXi l_i;
Ian Bell
committed
Eigen::ArrayXd na_A, na_B, na_C, na_D, na_a, na_b, na_beta, na_n;
Ian Bell
committed
auto go = [&N](Eigen::ArrayXd &v){ v.resize(N); v.setZero(); };
go(n); go(t); go(d); go(l); go(c); go(eta); go(beta); go(gamma); go(epsilon);
}
void allocate_na(std::size_t N) {
auto go = [&N](Eigen::ArrayXd& v) { v.resize(N); v.setZero(); };
go(na_A); go(na_B); go(na_C); go(na_D); go(na_a); go(na_b); go(na_beta); go(na_n);
}
void set_type(const std::string& kind) {
if (kind == "GaussianExponential") {
type = types::GaussianExponential;
}
else if (kind == "GaussianExponentialNonAnalytic") {
type = types::GaussianExponentialNonAnalytic;
}
else {
throw std::invalid_argument("Bad type to set_type:" + kind);
}
}
Ian Bell
committed
template<typename TauType, typename DeltaType>
auto alphar(const TauType& tau, const DeltaType& delta) const {
case types::GaussianExponential:{
return forceeval((n * exp(t * log(tau) + d * log(delta) - c * powIVi(delta, l_i) - eta * (delta - epsilon).square() - beta * (tau - gamma).square())).sum());
//return forceeval((n*exp(t*log(tau) + d*log(delta) - c*l_i.unaryViewExpr(PowIUnaryFunctor(delta)) - eta*(delta - epsilon).square() - beta*(tau - gamma).square())).sum());
break;
}
case types::GaussianExponentialNonAnalytic:
{
// All the "normal" terms
auto o1 = (n * exp(t * log(tau) + d * log(delta) - c * powIVi(delta, l_i) - eta * (delta - epsilon).square() - beta * (tau - gamma).square())).sum();
auto square = [](auto x) { return x * x; };
auto delta_min1_sq = square(delta-1.0);
auto Psi = (exp(-na_C*delta_min1_sq -na_D*square(tau-1.0))).eval();
const Eigen::ArrayXd k = 1.0/(2.0*na_beta);
auto theta = ((1.0-tau) + na_A*pow(delta_min1_sq, k)).eval();
auto Delta = (theta.square() + na_B*pow(delta_min1_sq, na_a)).eval();
auto o2 = (na_n*pow(Delta, na_b)*delta*Psi).eval().sum();
return forceeval(o1 + o2);
break;
}
default:
throw -1;
}
Ian Bell
committed
}
};
Ian Bell
committed
inline auto get_EOS(const std::string& coolprop_root, const std::string& name)
Ian Bell
committed
{
using namespace nlohmann;
auto j = json::parse(std::ifstream(coolprop_root + "/dev/fluids/" + name + ".json"));
auto alphar = j["EOS"][0]["alphar"];
std::size_t ncoeff_conventional = 0;
const std::vector<std::string> conventional_types = {"ResidualHelmholtzPower", "ResidualHelmholtzGaussian"};
const std::vector<std::string> weird_types = { "ResidualHelmholtzNonAnalytic" };
auto isallowed = [&](const auto &conventional_types, const std::string &name){
for (auto &a : conventional_types){ if (name == a){return true;};} return false;
};
Ian Bell
committed
for (auto& term : alphar) {
std::string type = term["type"];
if (!isallowed(conventional_types, type) & !isallowed(weird_types, type)){
Ian Bell
committed
throw std::invalid_argument("Bad type:" + type);
}
else{
if (isallowed(conventional_types, type)){
ncoeff_conventional += term["n"].size();
}
Ian Bell
committed
}
}
MultiFluidEOS eos;
eos.allocate(ncoeff_conventional); // Allocate arrays to the right size for conventional terms, fill with zero
eos.set_type("GaussianExponential"); // The default, generic formulation
Ian Bell
committed
auto toeig = [](const std::vector<double>& v) -> Eigen::ArrayXd { return Eigen::Map<const Eigen::ArrayXd>(&(v[0]), v.size()); };
/// lambda function for adding non-analytic terms
auto add_na = [&eos, &toeig](auto &term){
auto eigorzero = [&term, &toeig](const std::string& name) -> Eigen::ArrayXd {
return toeig(term[name]);
};
eos.na_n = eigorzero("n");
eos.na_A = eigorzero("A");
eos.na_B = eigorzero("B");
eos.na_C = eigorzero("C");
eos.na_D = eigorzero("D");
eos.na_a = eigorzero("a");
eos.na_b = eigorzero("b");
eos.na_beta = eigorzero("beta");
eos.set_type("GaussianExponentialNonAnalytic");
};
Ian Bell
committed
Ian Bell
committed
for (auto &term: alphar){
if (term["type"] == "ResidualHelmholtzNonAnalytic") {
add_na(term); continue;
}
std::size_t N = term["n"].size();
Ian Bell
committed
auto eigorzero = [&term, &toeig, &N](const std::string& name) -> Eigen::ArrayXd {
if (!term[name].empty()) {
return toeig(term[name]);
}
else {
return Eigen::ArrayXd::Zero(N);
}
Ian Bell
committed
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
eos.n.segment(offset, N) = eigorzero("n");
eos.t.segment(offset, N) = eigorzero("t");
eos.d.segment(offset, N) = eigorzero("d");
eos.eta.segment(offset, N) = eigorzero("eta");
eos.beta.segment(offset, N) = eigorzero("beta");
eos.gamma.segment(offset, N) = eigorzero("gamma");
eos.epsilon.segment(offset, N) = eigorzero("epsilon");
Eigen::ArrayXd c(N), l(N); c.setZero();
if (term["l"].empty()) {
// exponential part not included
l.setZero();
}
else {
l = toeig(term["l"]);
// l is included, use it to build c; c_i = 1 if l_i > 0, zero otherwise
for (auto i = 0; i < c.size(); ++i) {
if (l[i] > 0) {
c[i] = 1.0;
}
}
}
eos.c.segment(offset, N) = c;
eos.l.segment(offset, N) = l;
offset += N;
}
eos.l_i = eos.l.cast<int>();
if (((eos.l_i.cast<double>() - eos.l).cwiseAbs() > 0.0).any()) {
throw std::invalid_argument("Non-integer entry in l found");
}
Ian Bell
committed
return eos;
}
Ian Bell
committed
inline auto get_EOSs(const std::string& coolprop_root, const std::vector<std::string>& names) {
Ian Bell
committed
std::vector<MultiFluidEOS> EOSs;
for (auto& name : names) {
EOSs.emplace_back(get_EOS(coolprop_root, name));
}
return EOSs;
}
Ian Bell
committed
inline auto build_multifluid_model(const std::vector<std::string>& components, const std::string& coolprop_root, const std::string& BIPcollectionpath, const nlohmann::json& flags = {}) {
const auto BIPcollection = nlohmann::json::parse(std::ifstream(BIPcollectionpath));
auto [Tc, vc] = MultiFluidReducingFunction::get_Tcvc(coolprop_root, components);
auto EOSs = get_EOSs(coolprop_root, components);
// Things related to the mixture
auto F = MultiFluidReducingFunction::get_F_matrix(BIPcollection, components, flags);
auto funcs = get_departure_function_matrix(coolprop_root, BIPcollection, components, flags);
auto [betaT, gammaT, betaV, gammaV] = MultiFluidReducingFunction::get_BIP_matrices(BIPcollection, components, flags);
auto redfunc = MultiFluidReducingFunction(betaT, gammaT, betaV, gammaV, Tc, vc);
return MultiFluid(
std::move(redfunc),
std::move(CorrespondingStatesContribution(std::move(EOSs))),
std::move(DepartureContribution(std::move(F), std::move(funcs)))
);
}
/**
This class holds a lightweight reference to the core parts of the model, allowing for the reducing function to be modified
by the user, perhaps for model optimization purposes
The reducing function is moved into this class, while the donor class is used for the remaining bits and pieces
*/
template<typename ReducingFunction, typename BaseClass>
class MultiFluidReducingFunctionAdapter {
public:
const BaseClass& base;
const ReducingFunction redfunc;
template<class VecType>
auto R(const VecType& molefrac) const { return base.R(molefrac); }
MultiFluidReducingFunctionAdapter(const BaseClass& base, ReducingFunction&& redfunc) : base(base), redfunc(redfunc) {};
template<typename TType, typename RhoType, typename MoleFracType>
auto alphar(const TType& T,
const RhoType& rho,
const MoleFracType& molefrac) const
{
auto Tred = forceeval(redfunc.get_Tr(molefrac));
auto rhored = forceeval(redfunc.get_rhor(molefrac));
auto delta = forceeval(rho / rhored);
auto tau = forceeval(Tred / T);
auto val = base.corr.alphar(tau, delta, molefrac) + base.dep.alphar(tau, delta, molefrac);
return forceeval(val);
}
};
template<class Model>
auto build_BIPmodified(Model& model, const nlohmann::json& j) {
auto red = model.redfunc;
auto betaT = red.betaT;
betaT(0, 1) = j["betaT"];
auto betaV = red.betaV;
betaV(0, 1) = j["betaV"];
auto gammaT = red.gammaT, gammaV = red.gammaV;
gammaT(0, 1) = j["gammaT"]; gammaT(1, 0) = gammaT(0, 1);
gammaV(0, 1) = j["gammaV"]; gammaV(1, 0) = gammaV(0, 1);
auto Tc = red.Tc, vc = red.vc;
auto newred = MultiFluidReducingFunction(betaT, gammaT, betaV, gammaV, Tc, vc);
return MultiFluidReducingFunctionAdapter(model, std::move(newred));
}
Ian Bell
committed
/**
This class holds a lightweight reference to the core parts of the model
The reducing and departure functions are moved into this class, while the donor class is used for the corresponding states portion
*/
template<typename ReducingFunction, typename DepartureFunction, typename BaseClass>
class MultiFluidAdapter {
public:
const BaseClass& base;
const ReducingFunction redfunc;
const DepartureFunction depfunc;
Ian Bell
committed
template<class VecType>
auto R(const VecType& molefrac) const { return base.R(molefrac); }
Ian Bell
committed
MultiFluidAdapter(const BaseClass& base, ReducingFunction&& redfunc, DepartureFunction &&depfunc) : base(base), redfunc(redfunc), depfunc(depfunc) {};
template<typename TType, typename RhoType, typename MoleFracType>
auto alphar(const TType& T,
const RhoType& rho,
const MoleFracType& molefrac) const
{
auto Tred = forceeval(redfunc.get_Tr(molefrac));
auto rhored = forceeval(redfunc.get_rhor(molefrac));
auto delta = forceeval(rho / rhored);
auto tau = forceeval(Tred / T);
auto val = base.corr.alphar(tau, delta, molefrac) + depfunc.alphar(tau, delta, molefrac);
return forceeval(val);
}
};
Ian Bell
committed
template<class Model>
auto build_multifluid_mutant(Model& model, const nlohmann::json& j) {
Ian Bell
committed
auto red = model.redfunc;
auto betaT = red.betaT;
betaT(0, 1) = j["betaT"];
betaT(1, 0) = 1 / betaT(0, 1);
auto betaV = red.betaV;
betaV(0, 1) = j["betaV"];
betaV(1, 0) = 1 / betaV(0, 1);
auto gammaT = red.gammaT, gammaV = red.gammaV;
gammaT(0, 1) = j["gammaT"]; gammaT(1, 0) = gammaT(0, 1);
gammaV(0, 1) = j["gammaV"]; gammaV(1, 0) = gammaV(0, 1);
auto Tc = red.Tc, vc = red.vc;
auto newred = MultiFluidReducingFunction(betaT, gammaT, betaV, gammaV, Tc, vc);
Ian Bell
committed
if (j.contains("Fij") && j["Fij"] != 0.0) {
throw std::invalid_argument("Don't support Fij != 0 for now");
}
auto N = 2;
// Allocate the matrix with default models
Eigen::MatrixXd F(2, 2); F.setZero();
std::vector<std::vector<MultiFluidDepartureFunction>> funcs(N);
for (auto i = 0; i < funcs.size(); ++i) {
funcs[i].resize(funcs.size());
for (auto j = 0; j < N; ++j) {
funcs[i][j].set_type("none");
}
}
auto newdep = DepartureContribution(std::move(F), std::move(funcs));
Ian Bell
committed
return MultiFluidAdapter(model, std::move(newred), std::move(newdep));
}
class DummyEOS {
public:
template<typename TType, typename RhoType> auto alphar(TType tau, const RhoType& delta) const { return tau * delta; }
};
class DummyReducingFunction {
public:
template<typename MoleFractions> auto get_Tr(const MoleFractions& molefracs) const { return molefracs[0]; }
template<typename MoleFractions> auto get_rhor(const MoleFractions& molefracs) const { return molefracs[0]; }
};
Ian Bell
committed
inline auto build_dummy_multifluid_model(const std::vector<std::string>& components) {
std::vector<DummyEOS> EOSs(2);
std::vector<std::vector<DummyEOS>> funcs(2); for (auto i = 0; i < funcs.size(); ++i) { funcs[i].resize(funcs.size()); }
std::vector<std::vector<double>> F(2); for (auto i = 0; i < F.size(); ++i) { F[i].resize(F.size()); }
struct Fwrapper {
private:
const std::vector<std::vector<double>> F_;
public:
Fwrapper(const std::vector<std::vector<double>> &F) : F_(F){};
auto operator ()(std::size_t i, std::size_t j) const{ return F_[i][j]; }
};
auto ff = Fwrapper(F);
auto redfunc = DummyReducingFunction();
return MultiFluid(std::move(redfunc), std::move(CorrespondingStatesContribution(std::move(EOSs))), std::move(DepartureContribution(std::move(ff), std::move(funcs))));
}
Ian Bell
committed
inline void test_dummy() {