Skip to content
Snippets Groups Projects
multifluid.hpp 27.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • #include "nlohmann/json.hpp"
    
    
    Ian Bell's avatar
    Ian Bell committed
    #include <Eigen/Dense>
    #include <fstream>
    
    #include <cmath>
    
    #include "MultiComplex/MultiComplex.hpp"
    
    #include "multifluid_eosterms.hpp"
    
    
    Ian Bell's avatar
    Ian Bell committed
    // See https://eigen.tuxfamily.org/dox/TopicCustomizing_CustomScalar.html
    namespace Eigen {
    
        template<typename TN> struct NumTraits<mcx::MultiComplex<TN>> : NumTraits<double> // permits to get the epsilon, dummy_precision, lowest, highest functions
    
    Ian Bell's avatar
    Ian Bell committed
        {
            enum {
                IsComplex = 1,
                IsInteger = 0,
                IsSigned = 1,
                RequireInitialization = 1,
                ReadCost = 1,
                AddCost = 3,
                MulCost = 3
            };
        };
    }
    
    
    template<typename EOSCollection>
    class CorrespondingStatesContribution {
    
    private:
        const EOSCollection EOSs;
    public:
        CorrespondingStatesContribution(EOSCollection&& EOSs) : EOSs(EOSs) {};
    
        template<typename TauType, typename DeltaType, typename MoleFractions>
        auto alphar(const TauType& tau, const DeltaType& delta, const MoleFractions& molefracs) const {
    
            using resulttype = std::common_type_t<decltype(tau), decltype(molefracs[0]), decltype(delta)>; // Type promotion, without the const-ness
    
            resulttype alphar = 0.0;
            auto N = molefracs.size();
            for (auto i = 0; i < N; ++i) {
                alphar = alphar + molefracs[i] * EOSs[i].alphar(tau, delta);
            }
            return alphar;
        }
    };
    
    template<typename FCollection, typename DepartureFunctionCollection>
    class DepartureContribution {
    
    private:
        const FCollection F;
        const DepartureFunctionCollection funcs;
    public:
        DepartureContribution(FCollection&& F, DepartureFunctionCollection&& funcs) : F(F), funcs(funcs) {};
    
        template<typename TauType, typename DeltaType, typename MoleFractions>
        auto alphar(const TauType& tau, const DeltaType& delta, const MoleFractions& molefracs) const {
    
            using resulttype = std::common_type_t<decltype(tau), decltype(molefracs[0]), decltype(delta)>; // Type promotion, without the const-ness
    
            resulttype alphar = 0.0;
            auto N = molefracs.size();
            for (auto i = 0; i < N; ++i) {
    
    Ian Bell's avatar
    Ian Bell committed
                    alphar = alphar + molefracs[i] * molefracs[j] * F(i, j) * funcs[i][j].alphar(tau, delta);
    
                }
            }
            return alphar;
        }
    };
    
    template<typename ReducingFunction, typename CorrespondingTerm, typename DepartureTerm>
    
    class MultiFluid {  
    
    public:
    
        const ReducingFunction redfunc;
        const CorrespondingTerm corr;
        const DepartureTerm dep;
    
    
        template<class VecType>
        auto R(const VecType& molefrac) const {
            return get_R_gas<decltype(molefrac[0])>();
        }
    
    
        MultiFluid(ReducingFunction&& redfunc, CorrespondingTerm&& corr, DepartureTerm&& dep) : redfunc(redfunc), corr(corr), dep(dep) {};
    
        template<typename TType, typename RhoType>
        auto alphar(TType T,
            const RhoType& rhovec,
            const std::optional<typename RhoType::value_type> rhotot = std::nullopt) const
        {
    
    Ian Bell's avatar
    Ian Bell committed
            typename RhoType::value_type rhotot_ = (rhotot.has_value()) ? rhotot.value() : std::accumulate(std::begin(rhovec), std::end(rhovec), (decltype(rhovec[0]))0.0);
    
            return alphar(T, rhotot_, molefrac);
        }
    
        template<typename TType, typename RhoType, typename MoleFracType>
    
        auto alphar(const TType &T,
            const RhoType &rho,
    
            const MoleFracType& molefrac) const
        {
    
            auto Tred = forceeval(redfunc.get_Tr(molefrac));
            auto rhored = forceeval(redfunc.get_rhor(molefrac));
    
            auto delta = forceeval(rho / rhored);
            auto tau = forceeval(Tred / T);
            auto val = corr.alphar(tau, delta, molefrac) + dep.alphar(tau, delta, molefrac);
    
            return forceeval(val);
    
    Ian Bell's avatar
    Ian Bell committed
    class MultiFluidReducingFunction {
    private:
    
        Eigen::MatrixXd YT, Yv;
    
    Ian Bell's avatar
    Ian Bell committed
        template <typename Num>
    
    Ian Bell's avatar
    Ian Bell committed
        auto cube(Num x) const {
            return x*x*x;
        }
        template <typename Num>
        auto square(Num x) const {
            return x*x;
    
    Ian Bell's avatar
    Ian Bell committed
    public:
    
        const Eigen::MatrixXd betaT, gammaT, betaV, gammaV;
        const Eigen::ArrayXd Tc, vc;
    
    Ian Bell's avatar
    Ian Bell committed
    
        template<typename ArrayLike>
        MultiFluidReducingFunction(
            const Eigen::MatrixXd& betaT, const Eigen::MatrixXd& gammaT,
            const Eigen::MatrixXd& betaV, const Eigen::MatrixXd& gammaV,
            const ArrayLike& Tc, const ArrayLike& vc)
    
    Ian Bell's avatar
    Ian Bell committed
            : betaT(betaT), gammaT(gammaT), betaV(betaV), gammaV(gammaV), Tc(Tc), vc(vc) {
    
    Ian Bell's avatar
    Ian Bell committed
    
            auto N = Tc.size();
    
            YT.resize(N, N); YT.setZero();
            Yv.resize(N, N); Yv.setZero();
            for (auto i = 0; i < N; ++i) {
                for (auto j = i + 1; j < N; ++j) {
                    YT(i, j) = betaT(i, j) * gammaT(i, j) * sqrt(Tc[i] * Tc[j]);
                    YT(j, i) = betaT(j, i) * gammaT(j, i) * sqrt(Tc[i] * Tc[j]);
                    Yv(i, j) = 1.0 / 8.0 * betaV(i, j) * gammaV(i, j) * cube(cbrt(vc[i]) + cbrt(vc[j]));
                    Yv(j, i) = 1.0 / 8.0 * betaV(j, i) * gammaV(j, i) * cube(cbrt(vc[i]) + cbrt(vc[j]));
                }
            }
        }
    
        template <typename MoleFractions>
    
    Ian Bell's avatar
    Ian Bell committed
        auto Y(const MoleFractions& z, const Eigen::ArrayXd& Yc, const Eigen::MatrixXd& beta, const Eigen::MatrixXd& Yij) const {
    
    
    Ian Bell's avatar
    Ian Bell committed
            auto N = z.size();
    
    Ian Bell's avatar
    Ian Bell committed
            typename MoleFractions::value_type sum1 = 0.0;
    
    Ian Bell's avatar
    Ian Bell committed
                sum1 = sum1 + square(z[i]) * Yc[i];
            }
            
    
    Ian Bell's avatar
    Ian Bell committed
            typename MoleFractions::value_type sum2 = 0.0;
    
    Ian Bell's avatar
    Ian Bell committed
            for (auto i = 0; i < N-1; ++i){
                for (auto j = i+1; j < N; ++j) {
    
    Ian Bell's avatar
    Ian Bell committed
                    sum2 = sum2 + 2.0*z[i]*z[j]*(z[i] + z[j])/(square(beta(i, j))*z[i] + z[j])*Yij(i, j);
    
    Ian Bell's avatar
    Ian Bell committed
    
            return sum1 + sum2;
    
        static auto get_BIPdep(const nlohmann::json& collection, const std::vector<std::string>& components, const nlohmann::json& flags) {
    
            if (flags.contains("estimate")) {
                return nlohmann::json({
                    {"betaT", 1.0}, {"gammaT", 1.0}, {"betaV", 1.0}, {"gammaV", 1.0}, {"F", 0.0} 
                });
            }
    
    
            // convert string to upper case
            auto toupper = [](const std::string s){ auto data = s; std::for_each(data.begin(), data.end(), [](char& c) { c = ::toupper(c); }); return data;};
    
            std::string comp0 = toupper(components[0]);
            std::string comp1 = toupper(components[1]);
    
    Ian Bell's avatar
    Ian Bell committed
            for (auto& el : collection) {
    
                std::string name1 = toupper(el["Name1"]);
                std::string name2 = toupper(el["Name2"]);
                if (comp0 == name1 && comp1 == name2) {
    
    Ian Bell's avatar
    Ian Bell committed
                    return el;
                }
    
    Ian Bell's avatar
    Ian Bell committed
                    return el;
                }
            }
    
            throw std::invalid_argument("Can't match this binary pair");
    
        static auto get_binary_interaction_double(const nlohmann::json& collection, const std::vector<std::string>& components, const nlohmann::json& flags) {
            auto el = get_BIPdep(collection, components, flags);
    
    Ian Bell's avatar
    Ian Bell committed
    
            double betaT = el["betaT"], gammaT = el["gammaT"], betaV = el["betaV"], gammaV = el["gammaV"];
            // Backwards order of components, flip beta values
            if (components[0] == el["Name2"] && components[1] == el["Name1"]) {
                betaT = 1.0 / betaT;
                betaV = 1.0 / betaV;
            }
            return std::make_tuple(betaT, gammaT, betaV, gammaV);
        }
    
        static auto get_BIP_matrices(const nlohmann::json& collection, const std::vector<std::string>& components, const nlohmann::json& flags) {
    
    Ian Bell's avatar
    Ian Bell committed
            Eigen::MatrixXd betaT, gammaT, betaV, gammaV, YT, Yv;
            auto N = components.size();
            betaT.resize(N, N); betaT.setZero();
            gammaT.resize(N, N); gammaT.setZero();
            betaV.resize(N, N); betaV.setZero();
            gammaV.resize(N, N); gammaV.setZero();
            for (auto i = 0; i < N; ++i) {
                for (auto j = i + 1; j < N; ++j) {
    
                    auto [betaT_, gammaT_, betaV_, gammaV_] = get_binary_interaction_double(collection, { components[i], components[j] }, flags);
    
    Ian Bell's avatar
    Ian Bell committed
                    betaT(i, j) = betaT_;         betaT(j, i) = 1.0 / betaT(i, j);
                    gammaT(i, j) = gammaT_;       gammaT(j, i) = gammaT(i, j);
                    betaV(i, j) = betaV_;         betaV(j, i) = 1.0 / betaV(i, j);
                    gammaV(i, j) = gammaV_;       gammaV(j, i) = gammaV(i, j);
                }
            }
            return std::make_tuple(betaT, gammaT, betaV, gammaV);
        }
        static auto get_Tcvc(const std::string& coolprop_root, const std::vector<std::string>& components) {
    
    Ian Bell's avatar
    Ian Bell committed
            Eigen::ArrayXd Tc(components.size()), vc(components.size());
    
    Ian Bell's avatar
    Ian Bell committed
            using namespace nlohmann;
    
    Ian Bell's avatar
    Ian Bell committed
            auto i = 0;
    
    Ian Bell's avatar
    Ian Bell committed
            for (auto& c : components) {
    
                std::string path = coolprop_root + "/dev/fluids/" + c + ".json";
                std::ifstream ifs(path);
                if (!ifs) {
                    throw std::invalid_argument("Load path is invalid: " + path);
                }
                auto j = json::parse(ifs);
    
    Ian Bell's avatar
    Ian Bell committed
                auto red = j["EOS"][0]["STATES"]["reducing"];
                double Tc_ = red["T"];
                double rhoc_ = red["rhomolar"];
    
    Ian Bell's avatar
    Ian Bell committed
                Tc[i] = Tc_;
                vc[i] = 1.0 / rhoc_;
                i++;
    
    Ian Bell's avatar
    Ian Bell committed
            }
            return std::make_tuple(Tc, vc);
        }
    
        static auto get_F_matrix(const nlohmann::json& collection, const std::vector<std::string>& components, const nlohmann::json& flags) {
    
    Ian Bell's avatar
    Ian Bell committed
            Eigen::MatrixXd F(components.size(), components.size());
            auto N = components.size();
            for (auto i = 0; i < N; ++i) {
                F(i, i) = 0.0;
                for (auto j = i + 1; j < N; ++j) {
    
                    auto el = get_BIPdep(collection, { components[i], components[j] }, flags);
    
                    if (el.empty()) {
                        F(i, j) = 0.0;
                        F(j, i) = 0.0;
                    }
                    else{
                        F(i, j) = el["F"];
                        F(j, i) = el["F"];
                    }   
    
    Ian Bell's avatar
    Ian Bell committed
                }
            }
            return F;
        }
    
    Ian Bell's avatar
    Ian Bell committed
        template<typename MoleFractions> auto get_Tr(const MoleFractions& molefracs) const { return Y(molefracs, Tc, betaT, YT); }
        template<typename MoleFractions> auto get_rhor(const MoleFractions& molefracs) const { return 1.0 / Y(molefracs, vc, betaV, Yv); }
    
    inline auto get_departure_function_matrix(const std::string& coolprop_root, const nlohmann::json& BIPcollection, const std::vector<std::string>& components, const nlohmann::json& flags) {
    
        // Allocate the matrix with default models
        std::vector<std::vector<DepartureTerms>> funcs(components.size()); for (auto i = 0; i < funcs.size(); ++i) { funcs[i].resize(funcs.size()); }
    
        // Load the collection of data on departure functions
        auto depcollection = nlohmann::json::parse(std::ifstream(coolprop_root + "/dev/mixtures/mixture_departure_functions.json"));
        auto get_departure_json = [&depcollection](const std::string& Name) {
            for (auto& el : depcollection) {
                if (el["Name"] == Name) { return el; }
    
            throw std::invalid_argument("Bad argument");
        };
    
        auto build_power = [&](auto term) {
            std::size_t N = term["n"].size();
    
            PowerEOSTerm eos;
    
            auto eigorzero = [&term, &N](const std::string& name) -> Eigen::ArrayXd {
                if (!term[name].empty()) {
                    return toeig(term[name]);
                }
                else {
                    return Eigen::ArrayXd::Zero(N);
                }
            };
    
    
            eos.n = eigorzero("n");
            eos.t = eigorzero("t");
            eos.d = eigorzero("d");
    
            Eigen::ArrayXd c(N), l(N); c.setZero();
            if (term["l"].empty()) {
                // exponential part not included
                l.setZero();
    
                l = toeig(term["l"]);
                // l is included, use it to build c; c_i = 1 if l_i > 0, zero otherwise
                for (auto i = 0; i < c.size(); ++i) {
                    if (l[i] > 0) {
                        c[i] = 1.0;
                    }
                }
    
            eos.c = c;
            eos.l = l;
    
            eos.l_i = eos.l.cast<int>();
    
            if (((eos.l_i.cast<double>() - eos.l).cwiseAbs() > 0.0).any()) {
                throw std::invalid_argument("Non-integer entry in l found");
            }
    
        auto build_gaussian = [&](auto &term) {
            GaussianEOSTerm eos;
            eos.n = toeig(term["n"]);
            eos.t = toeig(term["t"]);
            eos.d = toeig(term["d"]);
            eos.eta = toeig(term["eta"]);
            eos.beta = toeig(term["beta"]);
            eos.gamma = toeig(term["gamma"]);
            eos.epsilon = toeig(term["epsilon"]);
            if (!all_same_length(term, { "n","t","d","eta","beta","gamma","epsilon" })) {
                throw std::invalid_argument("Lengths are not all identical in Gaussian term");
    
            return eos;
        };
        auto build_GERG2004 = [&](const auto& term, auto &dep) {
            if (!all_same_length(term, { "n","t","d","eta","beta","gamma","epsilon" })) {
    
    Ian Bell's avatar
    Ian Bell committed
                throw std::invalid_argument("Lengths are not all identical in GERG term");
    
            int Npower = term["Npower"];
            auto NGERG = static_cast<int>(term["n"].size()) - Npower;
    
            
            PowerEOSTerm eos;
            eos.n = toeig(term["n"]).head(Npower);
            eos.t = toeig(term["t"]).head(Npower);
            eos.d = toeig(term["d"]).head(Npower);
            if (term.contains("l")) {
                eos.l = toeig(term["l"]).head(Npower);
            }
            else {
                eos.l = 0.0 * eos.n;
            }
            eos.c = (eos.l > 0).cast<int>().cast<double>();
            eos.l_i = eos.l.cast<int>();
            dep.add_term(eos);
    
            GERG2004EOSTerm e;
            e.n = toeig(term["n"]).tail(NGERG);
            e.t = toeig(term["t"]).tail(NGERG);
            e.d = toeig(term["d"]).tail(NGERG);
            e.eta = toeig(term["eta"]).tail(NGERG);
            e.beta = toeig(term["beta"]).tail(NGERG);
            e.gamma = toeig(term["gamma"]).tail(NGERG);
            e.epsilon = toeig(term["epsilon"]).tail(NGERG);
            dep.add_term(e);
        };
        auto get_function = [&](auto& funcname) {
            auto j = get_departure_json(funcname); 
            auto type = j["type"];
            DepartureTerms dep;
            if (type == "Exponential") {
                dep.add_term(build_power(j));
            }
            else if(type == "GERG-2004" || type == "GERG-2008") {
                build_GERG2004(j, dep);
            }
            else {
                throw std::invalid_argument("Bad term type, should not get here");
            }
            return dep;
    
        };
    
        for (auto i = 0; i < funcs.size(); ++i) {
            for (auto j = i + 1; j < funcs.size(); ++j) {
    
                auto BIP = MultiFluidReducingFunction::get_BIPdep(BIPcollection, { components[i], components[j] }, flags);
    
                std::string funcname = BIP.contains("function") ? BIP["function"] : "";
    
                if (!funcname.empty()) {
                    funcs[i][j] = get_function(funcname);
                    funcs[j][i] = get_function(funcname);
    
                else {
    
                    funcs[i][j].add_term(NullEOSTerm());
                    funcs[j][i].add_term(NullEOSTerm());
    
    inline auto get_EOS_terms(const std::string& coolprop_root, const std::string& name)
    
    {
        using namespace nlohmann;
        auto j = json::parse(std::ifstream(coolprop_root + "/dev/fluids/" + name + ".json"));
        auto alphar = j["EOS"][0]["alphar"];
    
    
        const std::vector<std::string> allowed_types = { "ResidualHelmholtzPower", "ResidualHelmholtzGaussian", "ResidualHelmholtzNonAnalytic","ResidualHelmholtzGaoB", "ResidualHelmholtzLemmon2005", "ResidualHelmholtzExponential" };
    
        auto isallowed = [&](const auto& conventional_types, const std::string& name) {
            for (auto& a : conventional_types) { if (name == a) { return true; }; } return false;
    
    
        for (auto& term : alphar) {
            std::string type = term["type"];
    
            if (!isallowed(allowed_types, type)) {
                std::string a = allowed_types[0]; for (auto i = 1; i < allowed_types.size(); ++i) { a += "," + allowed_types[i]; }
                throw std::invalid_argument("Bad type:" + type + "; allowed types are: {" + a + "}");
    
        EOSTerms container;
    
        auto build_power = [&](auto term) {
            std::size_t N = term["n"].size();
    
            PowerEOSTerm eos;
    
    
            auto eigorzero = [&term, &N](const std::string& name) -> Eigen::ArrayXd {
    
                if (!term[name].empty()) {
                    return toeig(term[name]);
                }
                else {
                    return Eigen::ArrayXd::Zero(N);
                }
    
    
            eos.n = eigorzero("n");
            eos.t = eigorzero("t");
            eos.d = eigorzero("d");
    
    
            Eigen::ArrayXd c(N), l(N); c.setZero();
            if (term["l"].empty()) {
                // exponential part not included
                l.setZero();
            }
            else {
                l = toeig(term["l"]);
                // l is included, use it to build c; c_i = 1 if l_i > 0, zero otherwise
                for (auto i = 0; i < c.size(); ++i) {
                    if (l[i] > 0) {
                        c[i] = 1.0;
                    }
                }
            }
    
            eos.l_i = eos.l.cast<int>();
    
            if (((eos.l_i.cast<double>() - eos.l).cwiseAbs() > 0.0).any()) {
                throw std::invalid_argument("Non-integer entry in l found");
            }
            
            return eos;
        };
    
    
    Ian Bell's avatar
    Ian Bell committed
        auto build_Lemmon2005 = [&](auto term) {
            Lemmon2005EOSTerm eos;
    
            eos.n = toeig(term["n"]);
            eos.t = toeig(term["t"]);
            eos.d = toeig(term["d"]);
            eos.m = toeig(term["m"]);
            eos.l = toeig(term["l"]);
    
    Ian Bell's avatar
    Ian Bell committed
            eos.l_i = eos.l.cast<int>();
    
            if (!all_same_length(term, { "n","t","d","m","l" })) {
                throw std::invalid_argument("Lengths are not all identical in Lemmon2005 term");
            }
    
    Ian Bell's avatar
    Ian Bell committed
            if (((eos.l_i.cast<double>() - eos.l).cwiseAbs() > 0.0).any()) {
                throw std::invalid_argument("Non-integer entry in l found");
            }
            return eos;
        };
    
    
        auto build_gaussian = [&](auto term) {
            GaussianEOSTerm eos;
    
            eos.n = toeig(term["n"]);
            eos.t = toeig(term["t"]);
            eos.d = toeig(term["d"]);
            eos.eta = toeig(term["eta"]);
            eos.beta = toeig(term["beta"]);
            eos.gamma = toeig(term["gamma"]);
            eos.epsilon = toeig(term["epsilon"]);
            if (!all_same_length(term, { "n","t","d","eta","beta","gamma","epsilon" })) {
                throw std::invalid_argument("Lengths are not all identical in Gaussian term");
            }
    
        auto build_exponential = [&](auto term) {
            ExponentialEOSTerm eos;
            eos.n = toeig(term["n"]);
            eos.t = toeig(term["t"]);
            eos.d = toeig(term["d"]);
            eos.g = toeig(term["g"]);
            eos.l = toeig(term["l"]);
            eos.l_i = eos.l.cast<int>();
            if (!all_same_length(term, { "n","t","d","g","l" })) {
                throw std::invalid_argument("Lengths are not all identical in exponential term");
            }
            return eos;
        };
    
    
    Ian Bell's avatar
    Ian Bell committed
        auto build_GaoB = [&](auto term) {
            GaoBEOSTerm eos;
    
            eos.n = toeig(term["n"]);
            eos.t = toeig(term["t"]);
            eos.d = toeig(term["d"]);
            eos.eta = -toeig(term["eta"]); // Watch out for this sign flip!!
            eos.beta = toeig(term["beta"]);
            eos.gamma = toeig(term["gamma"]);
            eos.epsilon = toeig(term["epsilon"]);
            eos.b = toeig(term["b"]);
    
            if (!all_same_length(term, { "n","t","d","eta","beta","gamma","epsilon","b" })) {
                throw std::invalid_argument("Lengths are not all identical in GaoB term");
            }
    
    Ian Bell's avatar
    Ian Bell committed
            return eos;
        };
    
    
        /// lambda function for adding non-analytic terms
    
        auto build_na = [&](auto& term) {
    
            eos.n = toeig(term["n"]);
            eos.A = toeig(term["A"]);
            eos.B = toeig(term["B"]);
            eos.C = toeig(term["C"]);
            eos.D = toeig(term["D"]);
            eos.a = toeig(term["a"]);
            eos.b = toeig(term["b"]);
            eos.beta = toeig(term["beta"]);
            if (!all_same_length(term, { "n","A","B","C","D","a","b","beta" })) {
                throw std::invalid_argument("Lengths are not all identical in nonanalytic term");
            }
    
        for (auto& term : alphar) {
            auto type = term["type"];
            if (type == "ResidualHelmholtzPower") {
                container.add_term(build_power(term));
            }
            else if (type == "ResidualHelmholtzGaussian") {
                container.add_term(build_gaussian(term));
            }
            else if (type == "ResidualHelmholtzNonAnalytic") {
                container.add_term(build_na(term));
            }
    
    Ian Bell's avatar
    Ian Bell committed
            else if (type == "ResidualHelmholtzLemmon2005") {
                container.add_term(build_Lemmon2005(term));
            }
            else if (type == "ResidualHelmholtzGaoB") {
                container.add_term(build_GaoB(term));
            }
    
            else if (type == "ResidualHelmholtzExponential") {
                container.add_term(build_exponential(term));
            }
    
            else {
                throw std::invalid_argument("Bad term type, should not get here");
            }
    
    inline auto get_EOSs(const std::string& coolprop_root, const std::vector<std::string>& names) {
    
            auto term = get_EOS_terms(coolprop_root, name);
            EOSs.emplace_back(term);
    
    inline auto build_multifluid_model(const std::vector<std::string>& components, const std::string& coolprop_root, const std::string& BIPcollectionpath, const nlohmann::json& flags = {}) {
    
    
        const auto BIPcollection = nlohmann::json::parse(std::ifstream(BIPcollectionpath));
    
    
        // Pure fluids
    
        auto [Tc, vc] = MultiFluidReducingFunction::get_Tcvc(coolprop_root, components);
    
        auto EOSs = get_EOSs(coolprop_root, components); 
        
        // Things related to the mixture
        auto F = MultiFluidReducingFunction::get_F_matrix(BIPcollection, components, flags);
        auto funcs = get_departure_function_matrix(coolprop_root, BIPcollection, components, flags);
        auto [betaT, gammaT, betaV, gammaV] = MultiFluidReducingFunction::get_BIP_matrices(BIPcollection, components, flags);
    
    
        auto redfunc = MultiFluidReducingFunction(betaT, gammaT, betaV, gammaV, Tc, vc);
    
        return MultiFluid(
            std::move(redfunc),
            std::move(CorrespondingStatesContribution(std::move(EOSs))),
            std::move(DepartureContribution(std::move(F), std::move(funcs)))
        );
    }
    
    
    /**
    This class holds a lightweight reference to the core parts of the model, allowing for the reducing function to be modified
    by the user, perhaps for model optimization purposes
    
    The reducing function is moved into this class, while the donor class is used for the remaining bits and pieces 
    */
    template<typename ReducingFunction, typename BaseClass>
    class MultiFluidReducingFunctionAdapter {
    
    public:
        const BaseClass& base; 
        const ReducingFunction redfunc;
    
        template<class VecType>
        auto R(const VecType& molefrac) const { return base.R(molefrac); }
    
        MultiFluidReducingFunctionAdapter(const BaseClass& base, ReducingFunction&& redfunc) : base(base), redfunc(redfunc) {};
    
        template<typename TType, typename RhoType, typename MoleFracType>
        auto alphar(const TType& T,
            const RhoType& rho,
            const MoleFracType& molefrac) const
        {
            auto Tred = forceeval(redfunc.get_Tr(molefrac));
            auto rhored = forceeval(redfunc.get_rhor(molefrac));
            auto delta = forceeval(rho / rhored);
            auto tau = forceeval(Tred / T);
            auto val = base.corr.alphar(tau, delta, molefrac) + base.dep.alphar(tau, delta, molefrac);
            return forceeval(val);
        }
    };
    
    template<class Model>
    auto build_BIPmodified(Model& model, const nlohmann::json& j) {
        auto red = model.redfunc;
        auto betaT = red.betaT;
        betaT(0, 1) = j["betaT"];
    
    Ian Bell's avatar
    Ian Bell committed
        betaT(1, 0) = 1/betaT(0, 1);
    
        auto betaV = red.betaV;
        betaV(0, 1) = j["betaV"];
    
    Ian Bell's avatar
    Ian Bell committed
        betaV(1, 0) = 1/betaV(0, 1);
    
        auto gammaT = red.gammaT, gammaV = red.gammaV;
        gammaT(0, 1) = j["gammaT"]; gammaT(1, 0) = gammaT(0, 1);
        gammaV(0, 1) = j["gammaV"]; gammaV(1, 0) = gammaV(0, 1);
        auto Tc = red.Tc, vc = red.vc;
        auto newred = MultiFluidReducingFunction(betaT, gammaT, betaV, gammaV, Tc, vc);
        return MultiFluidReducingFunctionAdapter(model, std::move(newred));
    }
    
    /**
    This class holds a lightweight reference to the core parts of the model
    
    The reducing and departure functions are moved into this class, while the donor class is used for the corresponding states portion
    */
    template<typename ReducingFunction, typename DepartureFunction, typename BaseClass>
    class MultiFluidAdapter {
    
    public:
        const BaseClass& base;
        const ReducingFunction redfunc;
        const DepartureFunction depfunc;
    
        template<class VecType>
        auto R(const VecType& molefrac) const { return base.R(molefrac); }
    
        MultiFluidAdapter(const BaseClass& base, ReducingFunction&& redfunc, DepartureFunction &&depfunc) : base(base), redfunc(redfunc), depfunc(depfunc) {};
    
        template<typename TType, typename RhoType, typename MoleFracType>
        auto alphar(const TType& T,
            const RhoType& rho,
            const MoleFracType& molefrac) const
        {
            auto Tred = forceeval(redfunc.get_Tr(molefrac));
            auto rhored = forceeval(redfunc.get_rhor(molefrac));
            auto delta = forceeval(rho / rhored);
            auto tau = forceeval(Tred / T);
            auto val = base.corr.alphar(tau, delta, molefrac) + depfunc.alphar(tau, delta, molefrac);
            return forceeval(val);
        }
    };
    
    template<class Model>
    auto build_multifluid_mutant(Model& model, const nlohmann::json& j) {
    
        auto red = model.redfunc;
        auto betaT = red.betaT;
        betaT(0, 1) = j["betaT"];
        betaT(1, 0) = 1 / betaT(0, 1);
        auto betaV = red.betaV;
        betaV(0, 1) = j["betaV"];
        betaV(1, 0) = 1 / betaV(0, 1);
        auto gammaT = red.gammaT, gammaV = red.gammaV;
        gammaT(0, 1) = j["gammaT"]; gammaT(1, 0) = gammaT(0, 1);
        gammaV(0, 1) = j["gammaV"]; gammaV(1, 0) = gammaV(0, 1);
        auto Tc = red.Tc, vc = red.vc;
        auto newred = MultiFluidReducingFunction(betaT, gammaT, betaV, gammaV, Tc, vc);
    
        if (j.contains("Fij") && j["Fij"] != 0.0) {
    
            throw std::invalid_argument("We don't support Fij != 0 for now");
    
        }
        auto N = 2;
        // Allocate the matrix with default models
        Eigen::MatrixXd F(2, 2); F.setZero();
    
        std::vector<std::vector<DepartureTerms>> funcs(N);
    
        for (auto i = 0; i < funcs.size(); ++i) {
            funcs[i].resize(funcs.size());
            for (auto j = 0; j < N; ++j) {
    
                funcs[i][j].add_term(NullEOSTerm());
    
            }
        }
        auto newdep = DepartureContribution(std::move(F), std::move(funcs));
    
        return MultiFluidAdapter(model, std::move(newred), std::move(newdep));
    }
    
    class DummyEOS {
    public:
        template<typename TType, typename RhoType> auto alphar(TType tau, const RhoType& delta) const { return tau * delta; }
    };
    class DummyReducingFunction {
    public:
    
    Ian Bell's avatar
    Ian Bell committed
        template<typename MoleFractions> auto get_Tr(const MoleFractions& molefracs) const { return molefracs[0]; }
        template<typename MoleFractions> auto get_rhor(const MoleFractions& molefracs) const { return molefracs[0]; }
    
    inline auto build_dummy_multifluid_model(const std::vector<std::string>& components) {
    
        std::vector<DummyEOS> EOSs(2);
        std::vector<std::vector<DummyEOS>> funcs(2); for (auto i = 0; i < funcs.size(); ++i) { funcs[i].resize(funcs.size()); }
        std::vector<std::vector<double>> F(2); for (auto i = 0; i < F.size(); ++i) { F[i].resize(F.size()); }
    
        struct Fwrapper {
        private: 
            const std::vector<std::vector<double>> F_;
        public:
            Fwrapper(const std::vector<std::vector<double>> &F) : F_(F){};
            auto operator ()(std::size_t i, std::size_t j) const{ return F_[i][j]; }
        };
        auto ff = Fwrapper(F);
        auto redfunc = DummyReducingFunction();
        return MultiFluid(std::move(redfunc), std::move(CorrespondingStatesContribution(std::move(EOSs))), std::move(DepartureContribution(std::move(ff), std::move(funcs))));
    }
    
        auto model = build_dummy_multifluid_model({ "A", "B" });
        std::valarray<double> rhovec = { 1.0, 2.0 };
        auto alphar = model.alphar(300.0, rhovec);
    }