Skip to content
Snippets Groups Projects
multifluid.hpp 48.4 KiB
Newer Older
  • Learn to ignore specific revisions
  • #include "nlohmann/json.hpp"
    
    
    Ian Bell's avatar
    Ian Bell committed
    #include <Eigen/Dense>
    #include <fstream>
    
    #include <cmath>
    
    #include <filesystem>
    
    Ian Bell's avatar
    Ian Bell committed
    #include "teqp/derivs.hpp"
    
    Ian Bell's avatar
    Ian Bell committed
    #include "teqp/constants.hpp"
    
    #include "MultiComplex/MultiComplex.hpp"
    
    #include "multifluid_eosterms.hpp"
    
    #include <boost/algorithm/string/join.hpp>
    
    Ian Bell's avatar
    Ian Bell committed
    // See https://eigen.tuxfamily.org/dox/TopicCustomizing_CustomScalar.html
    namespace Eigen {
    
        template<typename TN> struct NumTraits<mcx::MultiComplex<TN>> : NumTraits<double> // permits to get the epsilon, dummy_precision, lowest, highest functions
    
    Ian Bell's avatar
    Ian Bell committed
        {
            enum {
                IsComplex = 1,
                IsInteger = 0,
                IsSigned = 1,
                RequireInitialization = 1,
                ReadCost = 1,
                AddCost = 3,
                MulCost = 3
            };
        };
    }
    
    
    namespace teqp{
    
    
    /// Load a JSON file from a specified file
    inline nlohmann::json load_a_JSON_file(const std::string& path) {
        if (!std::filesystem::is_regular_file(path)) {
            throw std::invalid_argument("Path to be loaded does not exist: " + path);
        }
        auto stream = std::ifstream(path);
        if (!stream) {
            throw std::invalid_argument("File stream cannot be opened from: " + path);
        }
        try {
            return nlohmann::json::parse(stream);
        }
        catch (...) {
            throw std::invalid_argument("File at " + path + " is not valid JSON");
        }
    }
    
    
    template<typename EOSCollection>
    class CorrespondingStatesContribution {
    
    private:
        const EOSCollection EOSs;
    public:
        CorrespondingStatesContribution(EOSCollection&& EOSs) : EOSs(EOSs) {};
    
        template<typename TauType, typename DeltaType, typename MoleFractions>
        auto alphar(const TauType& tau, const DeltaType& delta, const MoleFractions& molefracs) const {
    
            using resulttype = std::common_type_t<decltype(tau), decltype(molefracs[0]), decltype(delta)>; // Type promotion, without the const-ness
    
            resulttype alphar = 0.0;
            auto N = molefracs.size();
            for (auto i = 0; i < N; ++i) {
                alphar = alphar + molefracs[i] * EOSs[i].alphar(tau, delta);
            }
    
    Ian Bell's avatar
    Ian Bell committed
            return forceeval(alphar);
    
    
        template<typename TauType, typename DeltaType>
        auto alphari(const TauType& tau, const DeltaType& delta, std::size_t i) const {
            using resulttype = std::common_type_t<decltype(tau), decltype(delta)>; // Type promotion, without the const-ness
            return EOSs[i].alphar(tau, delta);
        }
    
        auto get_EOS(std::size_t i) const{
            return EOSs[i];
        }
    
    };
    
    template<typename FCollection, typename DepartureFunctionCollection>
    class DepartureContribution {
    
    private:
        const FCollection F;
        const DepartureFunctionCollection funcs;
    public:
        DepartureContribution(FCollection&& F, DepartureFunctionCollection&& funcs) : F(F), funcs(funcs) {};
    
        template<typename TauType, typename DeltaType, typename MoleFractions>
        auto alphar(const TauType& tau, const DeltaType& delta, const MoleFractions& molefracs) const {
    
            using resulttype = std::common_type_t<decltype(tau), decltype(molefracs[0]), decltype(delta)>; // Type promotion, without the const-ness
    
            resulttype alphar = 0.0;
            auto N = molefracs.size();
            for (auto i = 0; i < N; ++i) {
    
    Ian Bell's avatar
    Ian Bell committed
                    alphar = alphar + molefracs[i] * molefracs[j] * F(i, j) * funcs[i][j].alphar(tau, delta);
    
    Ian Bell's avatar
    Ian Bell committed
            return forceeval(alphar);
    
        }
    };
    
    template<typename ReducingFunction, typename CorrespondingTerm, typename DepartureTerm>
    
    class MultiFluid {  
    
    
    private:
        std::string meta = ""; ///< A string that can be used to store arbitrary metadata as needed
    
    public:
    
        const ReducingFunction redfunc;
        const CorrespondingTerm corr;
        const DepartureTerm dep;
    
    
        template<class VecType>
        auto R(const VecType& molefrac) const {
            return get_R_gas<decltype(molefrac[0])>();
        }
    
        /// Store some sort of metadata in string form (perhaps a JSON representation of the model?)
        void set_meta(const std::string& m) { meta = m; }
        /// Get the metadata stored in string form
        auto get_meta() const { return meta; }
    
    
        MultiFluid(ReducingFunction&& redfunc, CorrespondingTerm&& corr, DepartureTerm&& dep) : redfunc(redfunc), corr(corr), dep(dep) {};
    
        template<typename TType, typename RhoType>
        auto alphar(TType T,
            const RhoType& rhovec,
            const std::optional<typename RhoType::value_type> rhotot = std::nullopt) const
        {
    
    Ian Bell's avatar
    Ian Bell committed
            typename RhoType::value_type rhotot_ = (rhotot.has_value()) ? rhotot.value() : std::accumulate(std::begin(rhovec), std::end(rhovec), (decltype(rhovec[0]))0.0);
    
            return alphar(T, rhotot_, molefrac);
        }
    
        template<typename TType, typename RhoType, typename MoleFracType>
    
        auto alphar(const TType &T,
            const RhoType &rho,
    
            const MoleFracType& molefrac) const
        {
    
            auto Tred = forceeval(redfunc.get_Tr(molefrac));
            auto rhored = forceeval(redfunc.get_rhor(molefrac));
    
            auto delta = forceeval(rho / rhored);
            auto tau = forceeval(Tred / T);
            auto val = corr.alphar(tau, delta, molefrac) + dep.alphar(tau, delta, molefrac);
    
            return forceeval(val);
    
    Ian Bell's avatar
    Ian Bell committed
    class MultiFluidReducingFunction {
    private:
    
        Eigen::MatrixXd YT, Yv;
    
    Ian Bell's avatar
    Ian Bell committed
        template <typename Num>
    
    Ian Bell's avatar
    Ian Bell committed
        auto cube(Num x) const {
    
    Ian Bell's avatar
    Ian Bell committed
            return forceeval(x*x*x);
    
    Ian Bell's avatar
    Ian Bell committed
        }
        template <typename Num>
        auto square(Num x) const {
    
    Ian Bell's avatar
    Ian Bell committed
            return forceeval(x*x);
    
    Ian Bell's avatar
    Ian Bell committed
    public:
    
        const Eigen::MatrixXd betaT, gammaT, betaV, gammaV;
        const Eigen::ArrayXd Tc, vc;
    
    Ian Bell's avatar
    Ian Bell committed
    
        template<typename ArrayLike>
        MultiFluidReducingFunction(
            const Eigen::MatrixXd& betaT, const Eigen::MatrixXd& gammaT,
            const Eigen::MatrixXd& betaV, const Eigen::MatrixXd& gammaV,
            const ArrayLike& Tc, const ArrayLike& vc)
    
    Ian Bell's avatar
    Ian Bell committed
            : betaT(betaT), gammaT(gammaT), betaV(betaV), gammaV(gammaV), Tc(Tc), vc(vc) {
    
    Ian Bell's avatar
    Ian Bell committed
    
            auto N = Tc.size();
    
            YT.resize(N, N); YT.setZero();
            Yv.resize(N, N); Yv.setZero();
            for (auto i = 0; i < N; ++i) {
                for (auto j = i + 1; j < N; ++j) {
                    YT(i, j) = betaT(i, j) * gammaT(i, j) * sqrt(Tc[i] * Tc[j]);
                    YT(j, i) = betaT(j, i) * gammaT(j, i) * sqrt(Tc[i] * Tc[j]);
                    Yv(i, j) = 1.0 / 8.0 * betaV(i, j) * gammaV(i, j) * cube(cbrt(vc[i]) + cbrt(vc[j]));
                    Yv(j, i) = 1.0 / 8.0 * betaV(j, i) * gammaV(j, i) * cube(cbrt(vc[i]) + cbrt(vc[j]));
                }
            }
        }
    
        template <typename MoleFractions>
    
    Ian Bell's avatar
    Ian Bell committed
        auto Y(const MoleFractions& z, const Eigen::ArrayXd& Yc, const Eigen::MatrixXd& beta, const Eigen::MatrixXd& Yij) const {
    
    
    Ian Bell's avatar
    Ian Bell committed
            auto N = z.size();
    
    Ian Bell's avatar
    Ian Bell committed
            typename MoleFractions::value_type sum1 = 0.0;
    
    Ian Bell's avatar
    Ian Bell committed
                sum1 = sum1 + square(z[i]) * Yc[i];
            }
            
    
    Ian Bell's avatar
    Ian Bell committed
            typename MoleFractions::value_type sum2 = 0.0;
    
    Ian Bell's avatar
    Ian Bell committed
            for (auto i = 0; i < N-1; ++i){
                for (auto j = i+1; j < N; ++j) {
    
    Ian Bell's avatar
    Ian Bell committed
                    sum2 = sum2 + 2.0*z[i]*z[j]*(z[i] + z[j])/(square(beta(i, j))*z[i] + z[j])*Yij(i, j);
    
            return forceeval(sum1 + sum2);
    
    
        static auto get_BIPdep(const nlohmann::json& collection, const std::vector<std::string>& identifiers, const nlohmann::json& flags) {
    
            // If force-estimate is provided in flags, the estimation will over-ride the provided model(s)
            if (flags.contains("force-estimate")) {
    
                std::string scheme = flags["estimate"];
                if (scheme == "Lorentz-Berthelot") {
    
                    return std::make_tuple(nlohmann::json({
    
                        {"betaT", 1.0}, {"gammaT", 1.0}, {"betaV", 1.0}, {"gammaV", 1.0}, {"F", 0.0}
    
                    }), false);
    
                }
                else {
                    throw std::invalid_argument("estimation scheme is not understood:" + scheme);
                }
    
    
            // convert string to upper case
            auto toupper = [](const std::string s){ auto data = s; std::for_each(data.begin(), data.end(), [](char& c) { c = ::toupper(c); }); return data;};
    
    
            // First pass, check names
            std::string comp0 = toupper(identifiers[0]);
            std::string comp1 = toupper(identifiers[1]);
    
    Ian Bell's avatar
    Ian Bell committed
            for (auto& el : collection) {
    
                std::string name1 = toupper(el["Name1"]);
                std::string name2 = toupper(el["Name2"]);
                if (comp0 == name1 && comp1 == name2) {
    
                    return std::make_tuple(el, false);
    
                    return std::make_tuple(el, true);
    
            // Second pass, check CAS#
            for (auto& el : collection) {
                std::string CAS1 = el["CAS1"];
                std::string CAS2 = el["CAS2"];
                if (identifiers[0] == CAS1 && identifiers[1] == CAS2) {
                    return std::make_tuple(el, false);
                }
                if (identifiers[0] == CAS2 && identifiers[1] == CAS1) {
                    return std::make_tuple(el, true);
                }
            }
    
    
            // If estimate is provided in flags, it will be the fallback solution for filling in interaction parameters
            if (flags.contains("estimate")) {
                std::string scheme = flags["estimate"];
                if (scheme == "Lorentz-Berthelot") {
                    return std::make_tuple(nlohmann::json({
                        {"betaT", 1.0}, {"gammaT", 1.0}, {"betaV", 1.0}, {"gammaV", 1.0}, {"F", 0.0}
                        }), false);
                }
                else {
                    throw std::invalid_argument("estimation scheme is not understood:" + scheme);
                }
            }
            else {
                throw std::invalid_argument("Can't match the binary pair for: " + identifiers[0] + "/" + identifiers[1]);
            }
    
        static auto get_binary_interaction_double(const nlohmann::json& collection, const std::vector<std::string>& identifiers, const nlohmann::json& flags, const std::vector<double>&Tc, const std::vector<double>&vc) {
            auto [el, swap_needed] = get_BIPdep(collection, identifiers, flags);
    
            double betaT, gammaT, betaV, gammaV;
            if (el.contains("betaT") && el.contains("gammaT") && el.contains("betaV") & el.contains("gammaV")){
                betaT = el["betaT"]; gammaT = el["gammaT"]; betaV = el["betaV"]; gammaV = el["gammaV"];
                // Backwards order of components, flip beta values
                if (swap_needed) {
                    betaT = 1.0 / betaT;
                    betaV = 1.0 / betaV;
                }
            }
            else if (el.contains("xi") && el.contains("zeta")) {
    
                double xi = el["xi"], zeta = el["zeta"];
                gammaT = 0.5 * (Tc[0] + Tc[1] + xi) / (2 * sqrt(Tc[0] * Tc[1]));
                gammaV =  4.0 * (vc[0] + vc[1] + zeta) / (0.25*pow(1 / pow(1 / vc[0], 1.0 / 3.0) + 1 / pow(1 / vc[1], 1.0 / 3.0), 3));
    
    Ian Bell's avatar
    Ian Bell committed
                throw std::invalid_argument("Could not understand what to do with this binary model specification: " + el.dump());
    
    Ian Bell's avatar
    Ian Bell committed
            }
            return std::make_tuple(betaT, gammaT, betaV, gammaV);
        }
    
        template <typename Tcvec, typename vcvec>
        static auto get_BIP_matrices(const nlohmann::json& collection, const std::vector<std::string>& components, const nlohmann::json& flags, const Tcvec& Tc, const vcvec& vc) {
    
    Ian Bell's avatar
    Ian Bell committed
            Eigen::MatrixXd betaT, gammaT, betaV, gammaV, YT, Yv;
            auto N = components.size();
            betaT.resize(N, N); betaT.setZero();
            gammaT.resize(N, N); gammaT.setZero();
            betaV.resize(N, N); betaV.setZero();
            gammaV.resize(N, N); gammaV.setZero();
            for (auto i = 0; i < N; ++i) {
                for (auto j = i + 1; j < N; ++j) {
    
                    auto [betaT_, gammaT_, betaV_, gammaV_] = get_binary_interaction_double(collection, { components[i], components[j] }, flags, { Tc[i], Tc[j] }, { vc[i], vc[j] });
    
    Ian Bell's avatar
    Ian Bell committed
                    betaT(i, j) = betaT_;         betaT(j, i) = 1.0 / betaT(i, j);
                    gammaT(i, j) = gammaT_;       gammaT(j, i) = gammaT(i, j);
                    betaV(i, j) = betaV_;         betaV(j, i) = 1.0 / betaV(i, j);
                    gammaV(i, j) = gammaV_;       gammaV(j, i) = gammaV(i, j);
                }
            }
            return std::make_tuple(betaT, gammaT, betaV, gammaV);
        }
    
        static auto get_Tcvc(const std::vector<nlohmann::json>& pureJSON) {
            Eigen::ArrayXd Tc(pureJSON.size()), vc(pureJSON.size());
    
    Ian Bell's avatar
    Ian Bell committed
            auto i = 0;
    
            for (auto& j : pureJSON) {
    
    Ian Bell's avatar
    Ian Bell committed
                auto red = j["EOS"][0]["STATES"]["reducing"];
    
                double Tc_ = red.at("T");
                double rhoc_ = red.at("rhomolar");
    
    Ian Bell's avatar
    Ian Bell committed
                Tc[i] = Tc_;
                vc[i] = 1.0 / rhoc_;
                i++;
    
    Ian Bell's avatar
    Ian Bell committed
            }
            return std::make_tuple(Tc, vc);
        }
    
        static auto get_F_matrix(const nlohmann::json& collection, const std::vector<std::string>& identifiers, const nlohmann::json& flags) {
            auto N = identifiers.size(); 
            Eigen::MatrixXd F(N, N);
    
    Ian Bell's avatar
    Ian Bell committed
            for (auto i = 0; i < N; ++i) {
                F(i, i) = 0.0;
                for (auto j = i + 1; j < N; ++j) {
    
                    auto [el, swap_needed] = get_BIPdep(collection, { identifiers[i], identifiers[j] }, flags);
    
                    if (el.empty()) {
                        F(i, j) = 0.0;
                        F(j, i) = 0.0;
                    }
                    else{
                        F(i, j) = el["F"];
                        F(j, i) = el["F"];
                    }   
    
    Ian Bell's avatar
    Ian Bell committed
                }
            }
            return F;
        }
    
    Ian Bell's avatar
    Ian Bell committed
        template<typename MoleFractions> auto get_Tr(const MoleFractions& molefracs) const { return Y(molefracs, Tc, betaT, YT); }
        template<typename MoleFractions> auto get_rhor(const MoleFractions& molefracs) const { return 1.0 / Y(molefracs, vc, betaV, Yv); }
    
    class MultiFluidInvariantReducingFunction {
    private:
        Eigen::MatrixXd YT, Yv;
        template <typename Num> auto cube(Num x) const { return x * x * x; }
        template <typename Num> auto square(Num x) const { return x * x; }
    public:
        const Eigen::MatrixXd phiT, lambdaT, phiV, lambdaV;
        const Eigen::ArrayXd Tc, vc;
    
        template<typename ArrayLike>
        MultiFluidInvariantReducingFunction(
            const Eigen::MatrixXd& phiT, const Eigen::MatrixXd& lambdaT,
            const Eigen::MatrixXd& phiV, const Eigen::MatrixXd& lambdaV,
            const ArrayLike& Tc, const ArrayLike& vc)
            : phiT(phiT), lambdaT(lambdaT), phiV(phiV), lambdaV(lambdaV), Tc(Tc), vc(vc) {
    
            auto N = Tc.size();
    
            YT.resize(N, N); YT.setZero();
            Yv.resize(N, N); Yv.setZero();
            for (auto i = 0; i < N; ++i) {
                for (auto j = 0; j < N; ++j) {
                    YT(i, j) = sqrt(Tc[i] * Tc[j]);
                    YT(j, i) = sqrt(Tc[i] * Tc[j]);
                    Yv(i, j) = 1.0 / 8.0 * cube(cbrt(vc[i]) + cbrt(vc[j]));
                    Yv(j, i) = 1.0 / 8.0 * cube(cbrt(vc[i]) + cbrt(vc[j]));
                }
            }
        }
        template <typename MoleFractions>
        auto Y(const MoleFractions& z, const Eigen::MatrixXd& phi, const Eigen::MatrixXd& lambda, const Eigen::MatrixXd& Yij) const {
            auto N = z.size();
            typename MoleFractions::value_type sum = 0.0;
            for (auto i = 0; i < N; ++i) {
                for (auto j = 0; j < N; ++j) {
                    auto contrib = z[i] * z[j] * (phi(i, j) + z[j] * lambda(i, j)) * Yij(i, j);
                    sum += contrib;
                }
            }
            return sum;
        }
        template<typename MoleFractions> auto get_Tr(const MoleFractions& molefracs) const { return Y(molefracs, phiT, lambdaT, YT); }
        template<typename MoleFractions> auto get_rhor(const MoleFractions& molefracs) const { return 1.0 / Y(molefracs, phiV, lambdaV, Yv); }
    };
    
    
    /***
    * \brief Get the JSON data structure for a given departure function
    * \param name The name (or alias) of the departure function to be looked up
    * \parm path The root path to the fluid data, or alternatively, the path to the json file directly
    */
    inline auto get_departure_json(const std::string& name, const std::string& path) {
        std::string filepath = std::filesystem::is_regular_file(path) ? path : path + "/dev/mixtures/mixture_departure_functions.json";
        nlohmann::json j = load_a_JSON_file(filepath);
        std::string js = j.dump(2);
        // First pass, direct name lookup
        for (auto& el : j) {
            if (el.at("Name") == name) {
                return el;
            }
        }
        // Second pass, iterate over aliases
        for (auto& el : j) {
            for (auto &alias : el.at("aliases")) {
                if (alias == name) {
                    return el;
                }
            }
        }
        throw std::invalid_argument("Could not match the name: " + name + "when looking up departure function");
    }
        
    
    inline auto build_departure_function(const nlohmann::json& j) {
    
        auto build_power = [&](auto term, auto& dep) {
    
            std::size_t N = term["n"].size();
    
    
            // Don't add a departure function if there are no coefficients provided
            if (N == 0) {
                return;
            }
    
    
            PowerEOSTerm eos;
    
            auto eigorzero = [&term, &N](const std::string& name) -> Eigen::ArrayXd {
                if (!term[name].empty()) {
                    return toeig(term[name]);
                }
                else {
                    return Eigen::ArrayXd::Zero(N);
                }
            };
    
    
            eos.n = eigorzero("n");
            eos.t = eigorzero("t");
            eos.d = eigorzero("d");
    
            Eigen::ArrayXd c(N), l(N); c.setZero();
    
            if (term["l"].empty()) {
                // exponential part not included
                l.setZero();
    
                if (!all_same_length(term, { "n","t","d" })) {
    
                    throw std::invalid_argument("Lengths are not all identical in polynomial-like term");
    
                if (!all_same_length(term, { "n","t","d","l"})) {
                    throw std::invalid_argument("Lengths are not all identical in exponential term");
                }
    
                l = toeig(term["l"]);
                // l is included, use it to build c; c_i = 1 if l_i > 0, zero otherwise
                for (auto i = 0; i < c.size(); ++i) {
                    if (l[i] > 0) {
                        c[i] = 1.0;
                    }
                }
    
    
                // See how many of the first entries have zero values for l_i
                contiguous_lzero = (l[0] == 0);
                for (auto i = 0; i < c.size(); ++i) {
                    if (l[i] == 0) {
                        Nlzero++;
                    }
                }
            }
            Nlnonzero = l.size() - Nlzero;
    
            if ((l[0] != 0) && (l[l.size() - 1] == 0)) {
                throw std::invalid_argument("If l_i has zero and non-zero values, the zero values need to come first");
    
            eos.c = c;
            eos.l = l;
    
            eos.l_i = eos.l.cast<int>();
    
            if (Nlzero + Nlnonzero != l.size()) {
                throw std::invalid_argument("Somehow the l lengths don't add up");
            }
    
    
    
            if (((eos.l_i.cast<double>() - eos.l).cwiseAbs() > 0.0).any()) {
                throw std::invalid_argument("Non-integer entry in l found");
            }
    
            // If a contiguous portion of the terms have values of l_i that are zero
            // it is computationally advantageous to break up the evaluation into 
            // part that has just the n_i*tau^t_i*delta^d_i and the part with the
            // exponential term exp(-delta^l_i)
            if (l.sum() == 0) {
                // No l term at all, just polynomial
                JustPowerEOSTerm poly;
                poly.n = eos.n;
                poly.t = eos.t;
                poly.d = eos.d;
                dep.add_term(poly);
            }
            else if (l.sum() > 0 && contiguous_lzero){
                JustPowerEOSTerm poly; 
                poly.n = eos.n.head(Nlzero);
                poly.t = eos.t.head(Nlzero);
                poly.d = eos.d.head(Nlzero);
                dep.add_term(poly);
    
                PowerEOSTerm e;
                e.n = eos.n.tail(Nlnonzero);
                e.t = eos.t.tail(Nlnonzero);
                e.d = eos.d.tail(Nlnonzero);
                e.c = eos.c.tail(Nlnonzero);
                e.l = eos.l.tail(Nlnonzero);
    
                e.l_i = eos.l_i.tail(Nlnonzero);
    
                dep.add_term(e);
            }
            else {
                // Don't try to get too clever, just add the departure term
                dep.add_term(eos);
            }
    
        auto build_gaussian = [&](auto& term) {
    
            GaussianEOSTerm eos;
            eos.n = toeig(term["n"]);
            eos.t = toeig(term["t"]);
            eos.d = toeig(term["d"]);
            eos.eta = toeig(term["eta"]);
            eos.beta = toeig(term["beta"]);
            eos.gamma = toeig(term["gamma"]);
            eos.epsilon = toeig(term["epsilon"]);
            if (!all_same_length(term, { "n","t","d","eta","beta","gamma","epsilon" })) {
                throw std::invalid_argument("Lengths are not all identical in Gaussian term");
    
        auto build_GERG2004 = [&](const auto& term, auto& dep) {
    
            if (!all_same_length(term, { "n","t","d","eta","beta","gamma","epsilon" })) {
    
    Ian Bell's avatar
    Ian Bell committed
                throw std::invalid_argument("Lengths are not all identical in GERG term");
    
            int Npower = term["Npower"];
            auto NGERG = static_cast<int>(term["n"].size()) - Npower;
    
            PowerEOSTerm eos;
            eos.n = toeig(term["n"]).head(Npower);
            eos.t = toeig(term["t"]).head(Npower);
            eos.d = toeig(term["d"]).head(Npower);
            if (term.contains("l")) {
                eos.l = toeig(term["l"]).head(Npower);
            }
            else {
                eos.l = 0.0 * eos.n;
            }
            eos.c = (eos.l > 0).cast<int>().cast<double>();
            eos.l_i = eos.l.cast<int>();
            dep.add_term(eos);
    
            GERG2004EOSTerm e;
            e.n = toeig(term["n"]).tail(NGERG);
            e.t = toeig(term["t"]).tail(NGERG);
            e.d = toeig(term["d"]).tail(NGERG);
            e.eta = toeig(term["eta"]).tail(NGERG);
            e.beta = toeig(term["beta"]).tail(NGERG);
            e.gamma = toeig(term["gamma"]).tail(NGERG);
            e.epsilon = toeig(term["epsilon"]).tail(NGERG);
            dep.add_term(e);
        };
    
        auto build_GaussianExponential = [&](const auto& term, auto& dep) {
            if (!all_same_length(term, { "n","t","d","eta","beta","gamma","epsilon" })) {
                throw std::invalid_argument("Lengths are not all identical in Gaussian+Exponential term");
            }
            int Npower = term["Npower"];
            auto NGauss = static_cast<int>(term["n"].size()) - Npower;
    
            PowerEOSTerm eos;
            eos.n = toeig(term["n"]).head(Npower);
            eos.t = toeig(term["t"]).head(Npower);
            eos.d = toeig(term["d"]).head(Npower);
            if (term.contains("l")) {
                eos.l = toeig(term["l"]).head(Npower);
            }
            else {
                eos.l = 0.0 * eos.n;
            }
            eos.c = (eos.l > 0).cast<int>().cast<double>();
            eos.l_i = eos.l.cast<int>();
            dep.add_term(eos);
    
            GaussianEOSTerm e;
            e.n = toeig(term["n"]).tail(NGauss);
            e.t = toeig(term["t"]).tail(NGauss);
            e.d = toeig(term["d"]).tail(NGauss);
            e.eta = toeig(term["eta"]).tail(NGauss);
            e.beta = toeig(term["beta"]).tail(NGauss);
            e.gamma = toeig(term["gamma"]).tail(NGauss);
            e.epsilon = toeig(term["epsilon"]).tail(NGauss);
            dep.add_term(e);
        };
    
        std::string type = j.at("type");
    
        DepartureTerms dep;
        if (type == "Exponential") {
    
        }
        else if (type == "GERG-2004" || type == "GERG-2008") {
            build_GERG2004(j, dep);
        }
        else if (type == "Gaussian+Exponential") {
            build_GaussianExponential(j, dep);
        }
        else if (type == "none") {
            dep.add_term(NullEOSTerm());
        }
        else {
    
            
            std::vector<std::string> options = { "Exponential","GERG-2004","GERG-2008","Gaussian+Exponential", "none" };
            throw std::invalid_argument("Bad departure term type: " + type + ". Options are {" + boost::algorithm::join(options, ",") + "}");
    
    inline auto get_departure_function_matrix(const nlohmann::json& depcollection, const nlohmann::json& BIPcollection, const std::vector<std::string>& components, const nlohmann::json& flags) {
    
    
        // Allocate the matrix with default models
        std::vector<std::vector<DepartureTerms>> funcs(components.size()); for (auto i = 0; i < funcs.size(); ++i) { funcs[i].resize(funcs.size()); }
    
        // Load the collection of data on departure functions
    
        auto get_departure_json = [&depcollection](const std::string& Name) {
            for (auto& el : depcollection) {
                if (el["Name"] == Name) { return el; }
    
            throw std::invalid_argument("Bad departure function name: "+Name);
    
        };
    
        for (auto i = 0; i < funcs.size(); ++i) {
            for (auto j = i + 1; j < funcs.size(); ++j) {
    
                auto [BIP, swap_needed] = MultiFluidReducingFunction::get_BIPdep(BIPcollection, { components[i], components[j] }, flags);
    
                std::string funcname = BIP.contains("function") ? BIP["function"] : "";
    
                if (!funcname.empty()) {
    
                    auto jj = get_departure_json(funcname);
                    funcs[i][j] = build_departure_function(jj);
                    funcs[j][i] = build_departure_function(jj);
    
                else {
    
                    funcs[i][j].add_term(NullEOSTerm());
                    funcs[j][i].add_term(NullEOSTerm());
    
    inline auto get_EOS_terms(const nlohmann::json& j)
    
        const std::vector<std::string> allowed_types = { "ResidualHelmholtzPower", "ResidualHelmholtzGaussian", "ResidualHelmholtzNonAnalytic","ResidualHelmholtzGaoB", "ResidualHelmholtzLemmon2005", "ResidualHelmholtzExponential" };
    
        auto isallowed = [&](const auto& conventional_types, const std::string& name) {
            for (auto& a : conventional_types) { if (name == a) { return true; }; } return false;
    
    
        for (auto& term : alphar) {
            std::string type = term["type"];
    
            if (!isallowed(allowed_types, type)) {
                std::string a = allowed_types[0]; for (auto i = 1; i < allowed_types.size(); ++i) { a += "," + allowed_types[i]; }
                throw std::invalid_argument("Bad type:" + type + "; allowed types are: {" + a + "}");
    
        auto build_power = [&](auto term, auto & container) {
    
            std::size_t N = term["n"].size();
    
            PowerEOSTerm eos;
    
    
            auto eigorzero = [&term, &N](const std::string& name) -> Eigen::ArrayXd {
    
                if (!term[name].empty()) {
                    return toeig(term[name]);
                }
                else {
                    return Eigen::ArrayXd::Zero(N);
                }
    
    
            eos.n = eigorzero("n");
            eos.t = eigorzero("t");
            eos.d = eigorzero("d");
    
            int Nlzero = 0, Nlnonzero = 0;
            bool contiguous_lzero;
    
            if (term["l"].empty()) {
                // exponential part not included
                l.setZero();
            }
            else {
                l = toeig(term["l"]);
                // l is included, use it to build c; c_i = 1 if l_i > 0, zero otherwise
                for (auto i = 0; i < c.size(); ++i) {
                    if (l[i] > 0) {
                        c[i] = 1.0;
                    }
                }
    
    
                // See how many of the first entries have zero values for l_i
                contiguous_lzero = (l[0] == 0);
                for (auto i = 0; i < c.size(); ++i) {
                    if (l[i] == 0) {
                        Nlzero++;
                    }
                }
    
            if (Nlzero + Nlnonzero != l.size()) {
                throw std::invalid_argument("Somehow the l lengths don't add up");
            }
    
    
            if (((eos.l_i.cast<double>() - eos.l).cwiseAbs() > 0.0).any()) {
                throw std::invalid_argument("Non-integer entry in l found");
            }
            
    
            // If a contiguous portion of the terms have values of l_i that are zero
            // it is computationally advantageous to break up the evaluation into 
            // part that has just the n_i*tau^t_i*delta^d_i and the part with the
            // exponential term exp(-delta^l_i)
            if (l.sum() == 0) {
                // No l term at all, just polynomial
                JustPowerEOSTerm poly;
                poly.n = eos.n;
                poly.t = eos.t;
                poly.d = eos.d;
                container.add_term(poly);
            }
            else if (l.sum() > 0 && contiguous_lzero) {
                JustPowerEOSTerm poly;
                poly.n = eos.n.head(Nlzero);
                poly.t = eos.t.head(Nlzero);
                poly.d = eos.d.head(Nlzero);
                container.add_term(poly);
    
                PowerEOSTerm e;
                e.n = eos.n.tail(Nlnonzero);
                e.t = eos.t.tail(Nlnonzero);
                e.d = eos.d.tail(Nlnonzero);
                e.c = eos.c.tail(Nlnonzero);
                e.l = eos.l.tail(Nlnonzero);
    
                e.l_i = eos.l_i.tail(Nlnonzero);
    
                container.add_term(e);
            }
            else {
                // Don't try to get too clever, just add the term
                container.add_term(eos);
            }
    
    Ian Bell's avatar
    Ian Bell committed
        auto build_Lemmon2005 = [&](auto term) {
            Lemmon2005EOSTerm eos;
    
            eos.n = toeig(term["n"]);
            eos.t = toeig(term["t"]);
            eos.d = toeig(term["d"]);
            eos.m = toeig(term["m"]);
            eos.l = toeig(term["l"]);
    
    Ian Bell's avatar
    Ian Bell committed
            eos.l_i = eos.l.cast<int>();
    
            if (!all_same_length(term, { "n","t","d","m","l" })) {
                throw std::invalid_argument("Lengths are not all identical in Lemmon2005 term");
            }
    
    Ian Bell's avatar
    Ian Bell committed
            if (((eos.l_i.cast<double>() - eos.l).cwiseAbs() > 0.0).any()) {
                throw std::invalid_argument("Non-integer entry in l found");
            }
            return eos;
        };
    
    
        auto build_gaussian = [&](auto term) {
            GaussianEOSTerm eos;
    
            eos.n = toeig(term["n"]);
            eos.t = toeig(term["t"]);
            eos.d = toeig(term["d"]);
            eos.eta = toeig(term["eta"]);
            eos.beta = toeig(term["beta"]);
            eos.gamma = toeig(term["gamma"]);
            eos.epsilon = toeig(term["epsilon"]);
            if (!all_same_length(term, { "n","t","d","eta","beta","gamma","epsilon" })) {
                throw std::invalid_argument("Lengths are not all identical in Gaussian term");
            }
    
        auto build_exponential = [&](auto term) {
            ExponentialEOSTerm eos;
            eos.n = toeig(term["n"]);
            eos.t = toeig(term["t"]);
            eos.d = toeig(term["d"]);
            eos.g = toeig(term["g"]);
            eos.l = toeig(term["l"]);
            eos.l_i = eos.l.cast<int>();
            if (!all_same_length(term, { "n","t","d","g","l" })) {
                throw std::invalid_argument("Lengths are not all identical in exponential term");
            }
            return eos;
        };
    
    
    Ian Bell's avatar
    Ian Bell committed
        auto build_GaoB = [&](auto term) {
            GaoBEOSTerm eos;
    
            eos.n = toeig(term["n"]);
            eos.t = toeig(term["t"]);
            eos.d = toeig(term["d"]);
            eos.eta = -toeig(term["eta"]); // Watch out for this sign flip!!
            eos.beta = toeig(term["beta"]);
            eos.gamma = toeig(term["gamma"]);
            eos.epsilon = toeig(term["epsilon"]);
            eos.b = toeig(term["b"]);
    
            if (!all_same_length(term, { "n","t","d","eta","beta","gamma","epsilon","b" })) {
                throw std::invalid_argument("Lengths are not all identical in GaoB term");
            }
    
    Ian Bell's avatar
    Ian Bell committed
            return eos;
        };
    
    
        /// lambda function for adding non-analytic terms
    
        auto build_na = [&](auto& term) {
    
            eos.n = toeig(term["n"]);
            eos.A = toeig(term["A"]);
            eos.B = toeig(term["B"]);
            eos.C = toeig(term["C"]);
            eos.D = toeig(term["D"]);
            eos.a = toeig(term["a"]);
            eos.b = toeig(term["b"]);
            eos.beta = toeig(term["beta"]);
            if (!all_same_length(term, { "n","A","B","C","D","a","b","beta" })) {
                throw std::invalid_argument("Lengths are not all identical in nonanalytic term");
            }
    
            std::string type = term["type"];
    
            if (type == "ResidualHelmholtzPower") {
    
            }
            else if (type == "ResidualHelmholtzGaussian") {
                container.add_term(build_gaussian(term));
            }
            else if (type == "ResidualHelmholtzNonAnalytic") {
                container.add_term(build_na(term));
            }
    
    Ian Bell's avatar
    Ian Bell committed
            else if (type == "ResidualHelmholtzLemmon2005") {
                container.add_term(build_Lemmon2005(term));
            }
            else if (type == "ResidualHelmholtzGaoB") {
                container.add_term(build_GaoB(term));
            }
    
            else if (type == "ResidualHelmholtzExponential") {
                container.add_term(build_exponential(term));
            }
    
                throw std::invalid_argument("Bad term type: "+type);
    
    inline auto get_EOSs(const std::vector<nlohmann::json>& pureJSON) {
    
        for (auto& j : pureJSON) {
            auto term = get_EOS_terms(j);
    
    inline auto collect_component_json(const std::vector<std::string>& components, const std::string& root) 
    {
        std::vector<nlohmann::json> out;
        for (auto c : components) {
    
            // First we try to lookup the name as a path, which can be on the filesystem, or relative to the root for default name lookup
    
            std::vector<std::filesystem::path> candidates = { c, root + "/dev/fluids/" + c + ".json" };
            std::filesystem::path selected_path = "";
            for (auto candidate : candidates) {
    
                if (std::filesystem::is_regular_file(candidate)) {
    
                    selected_path = candidate;
                    break;
                }
            }
            if (selected_path != "") {
    
                out.push_back(load_a_JSON_file(selected_path.string()));
    
                throw std::invalid_argument("Could not load any of the candidates:" + c);
    
    inline auto collect_identifiers(const std::vector<nlohmann::json>& pureJSON)
    {
    
        std::vector<std::string> CAS, Name, REFPROP;
    
        for (auto j : pureJSON) {
    
            Name.push_back(j.at("INFO").at("NAME"));
            CAS.push_back(j.at("INFO").at("CAS"));
            REFPROP.push_back(j.at("INFO").at("REFPROP_NAME"));
    
        return std::map<std::string, std::vector<std::string>>{
            {"CAS", CAS},
            {"Name", Name},
            {"REFPROP", REFPROP}
        };
    
    /// Iterate over the possible options for identifiers to determine which one will satisfy all the binary pairs
    template<typename mapvecstring>
    inline auto select_identifier(const nlohmann::json& BIPcollection, const mapvecstring& identifierset, const nlohmann::json& flags){
        for (const auto &ident: identifierset){
            std::string key; std::vector<std::string> identifiers;
            std::tie(key, identifiers) = ident;
            try{
                for (auto i = 0; i < identifiers.size(); ++i){
                    for (auto j = i+1; j < identifiers.size(); ++j){
                        const std::vector<std::string> pair = {identifiers[i], identifiers[j]};
                        MultiFluidReducingFunction::get_BIPdep(BIPcollection, pair, flags);
                    }
                }
                return key;
            }
            catch(...){
                
            }
        }
        throw std::invalid_argument("Unable to match any of the identifier options");
    }
    
    /// Build a reverse-lookup map for finding a fluid JSON structure given a backup identifier
    inline auto build_alias_map(const std::string& root) {
        std::map<std::string, std::string> aliasmap;
        for (auto path : get_files_in_folder(root + "/dev/fluids", ".json")) {
            auto j = load_a_JSON_file(path.string());
    
            std::string REFPROP_name = j.at("INFO").at("REFPROP_NAME"); 
            std::string name = j.at("INFO").at("NAME");
    
            for (std::string k : {"NAME", "CAS", "REFPROP_NAME"}) {
    
                std::string val = j.at("INFO").at(k);
                // Skip REFPROP names that match the fluid itself
                if (k == "REFPROP_NAME" && val == name) {
                    continue;
                }
                // Skip invalid REFPROP names
                if (k == "REFPROP_NAME" && val == "N/A") {
                    continue;
                }
    
                    throw std::invalid_argument("Duplicated reverse lookup identifier ["+k+"] found in file:" + path.string());
    
                }
                else {
                    aliasmap[val] = std::filesystem::absolute(path).string();
                }
            }
            std::vector<std::string> aliases = j.at("INFO").at("ALIASES");
    
                if (alias != REFPROP_name && alias != name) { // Don't add REFPROP name or base name, were already above to list of aliases
                    if (aliasmap.count(alias) > 0) {
                        throw std::invalid_argument("Duplicated alias [" + alias + "] found in file:" + path.string());
                    }
                    else {
                        aliasmap[alias] = std::filesystem::absolute(path).string();
                    }
    
    /// Internal method for actually constructing the model with the provided JSON data structures
    inline auto _build_multifluid_model(const std::vector<nlohmann::json> &pureJSON, const nlohmann::json& BIPcollection, const nlohmann::json& depcollection, const nlohmann::json& flags = {}) {
    
        auto [Tc, vc] = MultiFluidReducingFunction::get_Tcvc(pureJSON);
        auto EOSs = get_EOSs(pureJSON);