Newer
Older
#pragma once
Ian Bell
committed
#include <string>
Ian Bell
committed
#include <optional>
#include <variant>
Ian Bell
committed
#include "teqp/types.hpp"
Ian Bell
committed
#include "teqp/filesystem.hpp"
#include "teqp/exceptions.hpp"
#include "MultiComplex/MultiComplex.hpp"
#include "multifluid_eosterms.hpp"
#include <boost/algorithm/string/join.hpp>
// See https://eigen.tuxfamily.org/dox/TopicCustomizing_CustomScalar.html
namespace Eigen {
template<typename TN> struct NumTraits<mcx::MultiComplex<TN>> : NumTraits<double> // permits to get the epsilon, dummy_precision, lowest, highest functions
{
enum {
IsComplex = 1,
IsInteger = 0,
IsSigned = 1,
RequireInitialization = 1,
ReadCost = 1,
AddCost = 3,
MulCost = 3
};
};
}
template<typename EOSCollection>
class CorrespondingStatesContribution {
private:
const EOSCollection EOSs;
public:
CorrespondingStatesContribution(EOSCollection&& EOSs) : EOSs(EOSs) {};
template<typename TauType, typename DeltaType, typename MoleFractions>
auto alphar(const TauType& tau, const DeltaType& delta, const MoleFractions& molefracs) const {
using resulttype = std::common_type_t<decltype(tau), decltype(molefracs[0]), decltype(delta)>; // Type promotion, without the const-ness
resulttype alphar = 0.0;
auto N = molefracs.size();
for (auto i = 0; i < N; ++i) {
alphar = alphar + molefracs[i] * EOSs[i].alphar(tau, delta);
}
}
template<typename TauType, typename DeltaType>
auto alphari(const TauType& tau, const DeltaType& delta, std::size_t i) const {
return EOSs[i].alphar(tau, delta);
}
auto get_EOS(std::size_t i) const{
return EOSs[i];
}
};
template<typename FCollection, typename DepartureFunctionCollection>
class DepartureContribution {
private:
const FCollection F;
const DepartureFunctionCollection funcs;
public:
DepartureContribution(FCollection&& F, DepartureFunctionCollection&& funcs) : F(F), funcs(funcs) {};
template<typename TauType, typename DeltaType, typename MoleFractions>
auto alphar(const TauType& tau, const DeltaType& delta, const MoleFractions& molefracs) const {
using resulttype = std::common_type_t<decltype(tau), decltype(molefracs[0]), decltype(delta)>; // Type promotion, without the const-ness
resulttype alphar = 0.0;
auto N = molefracs.size();
for (auto i = 0; i < N; ++i) {
Ian Bell
committed
for (auto j = i+1; j < N; ++j) {
alphar = alphar + molefracs[i] * molefracs[j] * F(i, j) * funcs[i][j].alphar(tau, delta);
}
}
}
/// Call a single departure term at i,j
template<typename TauType, typename DeltaType>
auto get_alpharij(const int i, const int j, const TauType& tau, const DeltaType& delta) const {
int N = funcs.size();
if (i < 0 || j < 0){
throw teqp::InvalidArgument("i or j is negative");
}
if (i >= N || j >= N){
throw teqp::InvalidArgument("i or j is invalid; size is " + std::to_string(N));
}
return forceeval(funcs[i][j].alphar(tau, delta));
}
};
template<typename CorrespondingTerm, typename DepartureTerm>
private:
std::string meta = ""; ///< A string that can be used to store arbitrary metadata as needed
const CorrespondingTerm corr;
const DepartureTerm dep;
template<class VecType>
auto R(const VecType& molefrac) const {
return get_R_gas<decltype(molefrac[0])>();
}
/// Store some sort of metadata in string form (perhaps a JSON representation of the model?)
void set_meta(const std::string& m) { meta = m; }
/// Get the metadata stored in string form
auto get_meta() const { return meta; }
MultiFluid(ReducingFunctions&& redfunc, CorrespondingTerm&& corr, DepartureTerm&& dep) : redfunc(redfunc), corr(corr), dep(dep) {};
template<typename TType, typename RhoType>
auto alphar(TType T,
const RhoType& rhovec,
const std::optional<typename RhoType::value_type> rhotot = std::nullopt) const
{
typename RhoType::value_type rhotot_ = (rhotot.has_value()) ? rhotot.value() : std::accumulate(std::begin(rhovec), std::end(rhovec), (decltype(rhovec[0]))0.0);
auto molefrac = rhovec / rhotot_;
return alphar(T, rhotot_, molefrac);
}
template<typename TType, typename RhoType, typename MoleFracType>
Ian Bell
committed
auto alphar(const TType &T,
const RhoType &rho,
const MoleFracType& molefrac) const
{
auto Tred = forceeval(redfunc.get_Tr(molefrac));
auto rhored = forceeval(redfunc.get_rhor(molefrac));
auto delta = forceeval(rho / rhored);
auto tau = forceeval(Tred / T);
auto val = corr.alphar(tau, delta, molefrac) + dep.alphar(tau, delta, molefrac);
return forceeval(val);
}
};
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/***
* \brief Get the JSON data structure for a given departure function
* \param name The name (or alias) of the departure function to be looked up
* \parm path The root path to the fluid data, or alternatively, the path to the json file directly
*/
inline auto get_departure_json(const std::string& name, const std::string& path) {
std::string filepath = std::filesystem::is_regular_file(path) ? path : path + "/dev/mixtures/mixture_departure_functions.json";
nlohmann::json j = load_a_JSON_file(filepath);
std::string js = j.dump(2);
// First pass, direct name lookup
for (auto& el : j) {
if (el.at("Name") == name) {
return el;
}
}
// Second pass, iterate over aliases
for (auto& el : j) {
for (auto &alias : el.at("aliases")) {
if (alias == name) {
return el;
}
}
}
throw std::invalid_argument("Could not match the name: " + name + "when looking up departure function");
}
inline auto build_departure_function(const nlohmann::json& j) {
Ian Bell
committed
auto build_power = [&](auto term, auto& dep) {
std::size_t N = term["n"].size();
// Don't add a departure function if there are no coefficients provided
if (N == 0) {
return;
}
PowerEOSTerm eos;
auto eigorzero = [&term, &N](const std::string& name) -> Eigen::ArrayXd {
if (!term[name].empty()) {
return toeig(term[name]);
}
else {
return Eigen::ArrayXd::Zero(N);
}
};
eos.n = eigorzero("n");
eos.t = eigorzero("t");
eos.d = eigorzero("d");
Eigen::ArrayXd c(N), l(N); c.setZero();
Ian Bell
committed
int Nlzero = 0, Nlnonzero = 0;
bool contiguous_lzero;
if (term["l"].empty()) {
// exponential part not included
l.setZero();
if (!all_same_length(term, { "n","t","d" })) {
Ian Bell
committed
throw std::invalid_argument("Lengths are not all identical in polynomial-like term");
Ian Bell
committed
else {
if (!all_same_length(term, { "n","t","d","l"})) {
throw std::invalid_argument("Lengths are not all identical in exponential term");
}
l = toeig(term["l"]);
// l is included, use it to build c; c_i = 1 if l_i > 0, zero otherwise
for (auto i = 0; i < c.size(); ++i) {
if (l[i] > 0) {
c[i] = 1.0;
}
}
Ian Bell
committed
// See how many of the first entries have zero values for l_i
contiguous_lzero = (l[0] == 0);
for (auto i = 0; i < c.size(); ++i) {
if (l[i] == 0) {
Nlzero++;
}
}
}
Nlnonzero = static_cast<int>(l.size()) - Nlzero;
Ian Bell
committed
if ((l[0] != 0) && (l[l.size() - 1] == 0)) {
throw std::invalid_argument("If l_i has zero and non-zero values, the zero values need to come first");
Ian Bell
committed
}
Ian Bell
committed
Ian Bell
committed
Ian Bell
committed
Ian Bell
committed
if (Nlzero + Nlnonzero != l.size()) {
throw std::invalid_argument("Somehow the l lengths don't add up");
}
if (((eos.l_i.cast<double>() - eos.l).cwiseAbs() > 0.0).any()) {
throw std::invalid_argument("Non-integer entry in l found");
}
Ian Bell
committed
Ian Bell
committed
// If a contiguous portion of the terms have values of l_i that are zero
// it is computationally advantageous to break up the evaluation into
// part that has just the n_i*tau^t_i*delta^d_i and the part with the
// exponential term exp(-delta^l_i)
if (l.sum() == 0) {
// No l term at all, just polynomial
JustPowerEOSTerm poly;
poly.n = eos.n;
poly.t = eos.t;
poly.d = eos.d;
dep.add_term(poly);
}
else if (l.sum() > 0 && contiguous_lzero){
JustPowerEOSTerm poly;
poly.n = eos.n.head(Nlzero);
poly.t = eos.t.head(Nlzero);
poly.d = eos.d.head(Nlzero);
dep.add_term(poly);
PowerEOSTerm e;
e.n = eos.n.tail(Nlnonzero);
e.t = eos.t.tail(Nlnonzero);
e.d = eos.d.tail(Nlnonzero);
e.c = eos.c.tail(Nlnonzero);
e.l = eos.l.tail(Nlnonzero);
Ian Bell
committed
dep.add_term(e);
}
else {
// Don't try to get too clever, just add the departure term
dep.add_term(eos);
}
Ian Bell
committed
auto build_doubleexponential = [&](auto& term, auto& dep) {
if (!all_same_length(term, { "n","t","d","ld","gd","lt","gt" })) {
throw std::invalid_argument("Lengths are not all identical in double exponential term");
}
DoubleExponentialEOSTerm eos;
eos.n = toeig(term.at("n"));
eos.t = toeig(term.at("t"));
eos.d = toeig(term.at("d"));
eos.ld = toeig(term.at("ld"));
eos.gd = toeig(term.at("gd"));
eos.lt = toeig(term.at("lt"));
eos.gt = toeig(term.at("gt"));
eos.ld_i = eos.ld.cast<int>();
dep.add_term(eos);
};
auto build_Chebyshev2D = [&](auto& term, auto& dep) {
Chebyshev2DEOSTerm eos;
int Ntau = term.at("Ntau"); // Degree in tau (there will be Ntau+1 coefficients in the tau direction)
int Ndelta = term.at("Ndelta"); // Degree in delta (there will be Ndelta+1 coefficients in the delta direction)
Eigen::ArrayXd c = toeig(term.at("a"));
if ((Ntau + 1)*(Ndelta + 1) != c.size()){
throw std::invalid_argument("Provided length [" + std::to_string(c.size()) + "] is not equal to (Ntau+1)*(Ndelta+1)");
}
eos.a = c.reshaped(Ntau+1, Ndelta+1).eval(); // All in one long array, then reshaped
eos.taumin = term.at("taumin");
eos.taumax = term.at("taumax");
eos.deltamin = term.at("deltamin");
eos.deltamax = term.at("deltamax");
dep.add_term(eos);
};
//auto build_gaussian = [&](auto& term) {
// GaussianEOSTerm eos;
// eos.n = toeig(term["n"]);
// eos.t = toeig(term["t"]);
// eos.d = toeig(term["d"]);
// eos.eta = toeig(term["eta"]);
// eos.beta = toeig(term["beta"]);
// eos.gamma = toeig(term["gamma"]);
// eos.epsilon = toeig(term["epsilon"]);
// if (!all_same_length(term, { "n","t","d","eta","beta","gamma","epsilon" })) {
// throw std::invalid_argument("Lengths are not all identical in Gaussian term");
// }
// return eos;
//};
auto build_GERG2004 = [&](const auto& term, auto& dep) {
if (!all_same_length(term, { "n","t","d","eta","beta","gamma","epsilon" })) {
throw std::invalid_argument("Lengths are not all identical in GERG term");
int Npower = term["Npower"];
auto NGERG = static_cast<int>(term["n"].size()) - Npower;
PowerEOSTerm eos;
eos.n = toeig(term["n"]).head(Npower);
eos.t = toeig(term["t"]).head(Npower);
eos.d = toeig(term["d"]).head(Npower);
if (term.contains("l")) {
eos.l = toeig(term["l"]).head(Npower);
}
else {
eos.l = 0.0 * eos.n;
}
eos.c = (eos.l > 0).cast<int>().cast<double>();
eos.l_i = eos.l.cast<int>();
dep.add_term(eos);
GERG2004EOSTerm e;
e.n = toeig(term["n"]).tail(NGERG);
e.t = toeig(term["t"]).tail(NGERG);
e.d = toeig(term["d"]).tail(NGERG);
e.eta = toeig(term["eta"]).tail(NGERG);
e.beta = toeig(term["beta"]).tail(NGERG);
e.gamma = toeig(term["gamma"]).tail(NGERG);
e.epsilon = toeig(term["epsilon"]).tail(NGERG);
dep.add_term(e);
};
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
auto build_GaussianExponential = [&](const auto& term, auto& dep) {
if (!all_same_length(term, { "n","t","d","eta","beta","gamma","epsilon" })) {
throw std::invalid_argument("Lengths are not all identical in Gaussian+Exponential term");
}
int Npower = term["Npower"];
auto NGauss = static_cast<int>(term["n"].size()) - Npower;
PowerEOSTerm eos;
eos.n = toeig(term["n"]).head(Npower);
eos.t = toeig(term["t"]).head(Npower);
eos.d = toeig(term["d"]).head(Npower);
if (term.contains("l")) {
eos.l = toeig(term["l"]).head(Npower);
}
else {
eos.l = 0.0 * eos.n;
}
eos.c = (eos.l > 0).cast<int>().cast<double>();
eos.l_i = eos.l.cast<int>();
dep.add_term(eos);
GaussianEOSTerm e;
e.n = toeig(term["n"]).tail(NGauss);
e.t = toeig(term["t"]).tail(NGauss);
e.d = toeig(term["d"]).tail(NGauss);
e.eta = toeig(term["eta"]).tail(NGauss);
e.beta = toeig(term["beta"]).tail(NGauss);
e.gamma = toeig(term["gamma"]).tail(NGauss);
e.epsilon = toeig(term["epsilon"]).tail(NGauss);
dep.add_term(e);
};
DepartureTerms dep;
if (type == "Exponential") {
Ian Bell
committed
build_power(j, dep);
else if (type == "DoubleExponential") {
build_doubleexponential(j, dep);
}
else if (type == "GERG-2004" || type == "GERG-2008") {
build_GERG2004(j, dep);
}
else if (type == "Gaussian+Exponential") {
build_GaussianExponential(j, dep);
}
else if (type == "Chebyshev2D") {
build_Chebyshev2D(j, dep);
}
else if (type == "none") {
dep.add_term(NullEOSTerm());
}
else {
std::vector<std::string> options = { "Exponential","GERG-2004","GERG-2008","Gaussian+Exponential", "none", "DoubleExponential","Chebyshev2D"};
throw std::invalid_argument("Bad departure term type: " + type + ". Options are {" + boost::algorithm::join(options, ",") + "}");
}
return dep;
}
Ian Bell
committed
inline auto get_departure_function_matrix(const nlohmann::json& depcollection, const nlohmann::json& BIPcollection, const std::vector<std::string>& components, const nlohmann::json& flags) {
// Allocate the matrix with default models
std::vector<std::vector<DepartureTerms>> funcs(components.size()); for (auto i = 0; i < funcs.size(); ++i) { funcs[i].resize(funcs.size()); }
// Load the collection of data on departure functions
Ian Bell
committed
auto get_departure_json = [&depcollection](const std::string& Name) {
for (auto& el : depcollection) {
if (el["Name"] == Name) { return el; }
throw std::invalid_argument("Bad departure function name: "+Name);
Ian Bell
committed
};
auto funcsmeta = nlohmann::json::object();
Ian Bell
committed
for (auto i = 0; i < funcs.size(); ++i) {
std::string istr = std::to_string(i);
if (funcsmeta.contains(istr)) { funcsmeta[istr] = {}; }
Ian Bell
committed
for (auto j = i + 1; j < funcs.size(); ++j) {
std::string jstr = std::to_string(j);
auto [BIP, swap_needed] = reducing::get_BIPdep(BIPcollection, { components[i], components[j] }, flags);
std::string funcname = BIP.contains("function") ? BIP["function"] : "";
auto jj = get_departure_json(funcname);
funcsmeta[istr][jstr] = { {"departure", jj}, {"BIP", BIP} };
funcsmeta[istr][jstr]["BIP"]["swap_needed"] = swap_needed;
funcs[i][j] = build_departure_function(jj);
funcs[j][i] = build_departure_function(jj);
Ian Bell
committed
}
funcs[i][j].add_term(NullEOSTerm());
funcs[j][i].add_term(NullEOSTerm());
Ian Bell
committed
}
}
return std::make_tuple(funcs, funcsmeta);
Ian Bell
committed
}
inline auto get_EOS_terms(const nlohmann::json& j)
Ian Bell
committed
{
auto alphar = j["EOS"][0]["alphar"];
const std::vector<std::string> allowed_types = { "ResidualHelmholtzPower", "ResidualHelmholtzGaussian", "ResidualHelmholtzNonAnalytic","ResidualHelmholtzGaoB", "ResidualHelmholtzLemmon2005", "ResidualHelmholtzExponential" };
auto isallowed = [&](const auto& conventional_types, const std::string& name) {
for (auto& a : conventional_types) { if (name == a) { return true; }; } return false;
Ian Bell
committed
for (auto& term : alphar) {
std::string type = term["type"];
if (!isallowed(allowed_types, type)) {
std::string a = allowed_types[0]; for (auto i = 1; i < allowed_types.size(); ++i) { a += "," + allowed_types[i]; }
throw std::invalid_argument("Bad type:" + type + "; allowed types are: {" + a + "}");
Ian Bell
committed
}
}
EOSTerms container;
Ian Bell
committed
auto build_power = [&](auto term, auto & container) {
std::size_t N = term["n"].size();
PowerEOSTerm eos;
auto eigorzero = [&term, &N](const std::string& name) -> Eigen::ArrayXd {
Ian Bell
committed
if (!term[name].empty()) {
return toeig(term[name]);
}
else {
return Eigen::ArrayXd::Zero(N);
}
Ian Bell
committed
eos.n = eigorzero("n");
eos.t = eigorzero("t");
eos.d = eigorzero("d");
Ian Bell
committed
Eigen::ArrayXd c(N), l(N); c.setZero();
Ian Bell
committed
int Nlzero = 0, Nlnonzero = 0;
bool contiguous_lzero;
Ian Bell
committed
if (term["l"].empty()) {
// exponential part not included
l.setZero();
}
else {
l = toeig(term["l"]);
// l is included, use it to build c; c_i = 1 if l_i > 0, zero otherwise
for (auto i = 0; i < c.size(); ++i) {
if (l[i] > 0) {
c[i] = 1.0;
}
}
Ian Bell
committed
// See how many of the first entries have zero values for l_i
contiguous_lzero = (l[0] == 0);
for (auto i = 0; i < c.size(); ++i) {
if (l[i] == 0) {
Nlzero++;
}
}
Ian Bell
committed
}
Nlnonzero = static_cast<int>(l.size()) - Nlzero;
Ian Bell
committed
eos.c = c;
eos.l = l;
Ian Bell
committed
eos.l_i = eos.l.cast<int>();
Ian Bell
committed
if (Nlzero + Nlnonzero != l.size()) {
throw std::invalid_argument("Somehow the l lengths don't add up");
}
if (((eos.l_i.cast<double>() - eos.l).cwiseAbs() > 0.0).any()) {
throw std::invalid_argument("Non-integer entry in l found");
}
Ian Bell
committed
// If a contiguous portion of the terms have values of l_i that are zero
// it is computationally advantageous to break up the evaluation into
// part that has just the n_i*tau^t_i*delta^d_i and the part with the
// exponential term exp(-delta^l_i)
if (l.sum() == 0) {
// No l term at all, just polynomial
JustPowerEOSTerm poly;
poly.n = eos.n;
poly.t = eos.t;
poly.d = eos.d;
container.add_term(poly);
}
else if (l.sum() > 0 && contiguous_lzero) {
JustPowerEOSTerm poly;
poly.n = eos.n.head(Nlzero);
poly.t = eos.t.head(Nlzero);
poly.d = eos.d.head(Nlzero);
container.add_term(poly);
PowerEOSTerm e;
e.n = eos.n.tail(Nlnonzero);
e.t = eos.t.tail(Nlnonzero);
e.d = eos.d.tail(Nlnonzero);
e.c = eos.c.tail(Nlnonzero);
e.l = eos.l.tail(Nlnonzero);
Ian Bell
committed
container.add_term(e);
}
else {
// Don't try to get too clever, just add the term
container.add_term(eos);
}
};
auto build_Lemmon2005 = [&](auto term) {
Lemmon2005EOSTerm eos;
eos.n = toeig(term["n"]);
eos.t = toeig(term["t"]);
eos.d = toeig(term["d"]);
eos.m = toeig(term["m"]);
eos.l = toeig(term["l"]);
if (!all_same_length(term, { "n","t","d","m","l" })) {
throw std::invalid_argument("Lengths are not all identical in Lemmon2005 term");
}
if (((eos.l_i.cast<double>() - eos.l).cwiseAbs() > 0.0).any()) {
throw std::invalid_argument("Non-integer entry in l found");
}
return eos;
};
auto build_gaussian = [&](auto term) {
GaussianEOSTerm eos;
eos.n = toeig(term["n"]);
eos.t = toeig(term["t"]);
eos.d = toeig(term["d"]);
eos.eta = toeig(term["eta"]);
eos.beta = toeig(term["beta"]);
eos.gamma = toeig(term["gamma"]);
eos.epsilon = toeig(term["epsilon"]);
if (!all_same_length(term, { "n","t","d","eta","beta","gamma","epsilon" })) {
throw std::invalid_argument("Lengths are not all identical in Gaussian term");
}
return eos;
};
auto build_exponential = [&](auto term) {
ExponentialEOSTerm eos;
eos.n = toeig(term["n"]);
eos.t = toeig(term["t"]);
eos.d = toeig(term["d"]);
eos.g = toeig(term["g"]);
eos.l = toeig(term["l"]);
eos.l_i = eos.l.cast<int>();
if (!all_same_length(term, { "n","t","d","g","l" })) {
throw std::invalid_argument("Lengths are not all identical in exponential term");
}
return eos;
};
auto build_GaoB = [&](auto term) {
GaoBEOSTerm eos;
eos.n = toeig(term["n"]);
eos.t = toeig(term["t"]);
eos.d = toeig(term["d"]);
eos.eta = -toeig(term["eta"]); // Watch out for this sign flip!!
eos.beta = toeig(term["beta"]);
eos.gamma = toeig(term["gamma"]);
eos.epsilon = toeig(term["epsilon"]);
eos.b = toeig(term["b"]);
if (!all_same_length(term, { "n","t","d","eta","beta","gamma","epsilon","b" })) {
throw std::invalid_argument("Lengths are not all identical in GaoB term");
}
/// lambda function for adding non-analytic terms
auto build_na = [&](auto& term) {
NonAnalyticEOSTerm eos;
eos.n = toeig(term["n"]);
eos.A = toeig(term["A"]);
eos.B = toeig(term["B"]);
eos.C = toeig(term["C"]);
eos.D = toeig(term["D"]);
eos.a = toeig(term["a"]);
eos.b = toeig(term["b"]);
eos.beta = toeig(term["beta"]);
if (!all_same_length(term, { "n","A","B","C","D","a","b","beta" })) {
throw std::invalid_argument("Lengths are not all identical in nonanalytic term");
}
return eos;
};
for (auto& term : alphar) {
if (type == "ResidualHelmholtzPower") {
Ian Bell
committed
build_power(term, container);
}
else if (type == "ResidualHelmholtzGaussian") {
container.add_term(build_gaussian(term));
}
else if (type == "ResidualHelmholtzNonAnalytic") {
container.add_term(build_na(term));
}
else if (type == "ResidualHelmholtzLemmon2005") {
container.add_term(build_Lemmon2005(term));
}
else if (type == "ResidualHelmholtzGaoB") {
container.add_term(build_GaoB(term));
}
else if (type == "ResidualHelmholtzExponential") {
container.add_term(build_exponential(term));
}
else {
throw std::invalid_argument("Bad term type: "+type);
return container;
Ian Bell
committed
}
inline auto get_EOSs(const std::vector<nlohmann::json>& pureJSON) {
std::vector<EOSTerms> EOSs;
for (auto& j : pureJSON) {
auto term = get_EOS_terms(j);
EOSs.emplace_back(term);
Ian Bell
committed
}
return EOSs;
}
inline auto collect_component_json(const std::vector<std::string>& components, const std::string& root)
{
std::vector<nlohmann::json> out;
for (auto c : components) {
// First we try to lookup the name as a path, which can be on the filesystem, or relative to the root for default name lookup
std::vector<std::filesystem::path> candidates = { c, root + "/dev/fluids/" + c + ".json" };
std::filesystem::path selected_path = "";
for (auto candidate : candidates) {
if (std::filesystem::is_regular_file(candidate)) {
selected_path = candidate;
break;
}
}
if (selected_path != "") {
out.push_back(load_a_JSON_file(selected_path.string()));
throw std::invalid_argument("Could not load any of the candidates:" + c);
}
}
return out;
}
inline auto collect_identifiers(const std::vector<nlohmann::json>& pureJSON)
{
std::vector<std::string> CAS, Name, REFPROP;
Name.push_back(j.at("INFO").at("NAME"));
CAS.push_back(j.at("INFO").at("CAS"));
REFPROP.push_back(j.at("INFO").at("REFPROP_NAME"));
return std::map<std::string, std::vector<std::string>>{
{"CAS", CAS},
{"Name", Name},
{"REFPROP", REFPROP}
};
/// Iterate over the possible options for identifiers to determine which one will satisfy all the binary pairs
template<typename mapvecstring>
inline auto select_identifier(const nlohmann::json& BIPcollection, const mapvecstring& identifierset, const nlohmann::json& flags){
for (const auto &ident: identifierset){
std::string key; std::vector<std::string> identifiers;
std::tie(key, identifiers) = ident;
try{
for (auto i = 0; i < identifiers.size(); ++i){
for (auto j = i+1; j < identifiers.size(); ++j){
const std::vector<std::string> pair = {identifiers[i], identifiers[j]};
reducing::get_BIPdep(BIPcollection, pair, flags);
}
}
return key;
}
catch(...){
}
}
throw std::invalid_argument("Unable to match any of the identifier options");
}
Ian Bell
committed
/// Build a reverse-lookup map for finding a fluid JSON structure given a backup identifier
inline auto build_alias_map(const std::string& root) {
std::map<std::string, std::string> aliasmap;
for (auto path : get_files_in_folder(root + "/dev/fluids", ".json")) {
auto j = load_a_JSON_file(path.string());
std::string REFPROP_name = j.at("INFO").at("REFPROP_NAME");
std::string name = j.at("INFO").at("NAME");
Ian Bell
committed
for (std::string k : {"NAME", "CAS", "REFPROP_NAME"}) {
std::string val = j.at("INFO").at(k);
// Skip REFPROP names that match the fluid itself
if (k == "REFPROP_NAME" && val == name) {
continue;
}
// Skip invalid REFPROP names
if (k == "REFPROP_NAME" && val == "N/A") {
continue;
}
Ian Bell
committed
if (aliasmap.count(val) > 0) {
throw std::invalid_argument("Duplicated reverse lookup identifier ["+k+"] found in file:" + path.string());
Ian Bell
committed
}
else {
aliasmap[val] = std::filesystem::absolute(path).string();
}
}
std::vector<std::string> aliases = j.at("INFO").at("ALIASES");
Ian Bell
committed
for (std::string alias : aliases) {
if (alias != REFPROP_name && alias != name) { // Don't add REFPROP name or base name, were already above to list of aliases
if (aliasmap.count(alias) > 0) {
throw std::invalid_argument("Duplicated alias [" + alias + "] found in file:" + path.string());
}
else {
aliasmap[alias] = std::filesystem::absolute(path).string();
}
Ian Bell
committed
}
}
}
return aliasmap;
}
Ian Bell
committed
/// Internal method for actually constructing the model with the provided JSON data structures
inline auto _build_multifluid_model(const std::vector<nlohmann::json> &pureJSON, const nlohmann::json& BIPcollection, const nlohmann::json& depcollection, const nlohmann::json& flags = {}) {
auto [Tc, vc] = reducing::get_Tcvc(pureJSON);
Ian Bell
committed
auto EOSs = get_EOSs(pureJSON);
// Extract the set of possible identifiers to be used to match parameters
auto identifierset = collect_identifiers(pureJSON);
// Decide which identifier is to be used (Name, CAS, REFPROP name)
auto identifiers = identifierset[select_identifier(BIPcollection, identifierset, flags)];
// Things related to the mixture
auto F = reducing::get_F_matrix(BIPcollection, identifiers, flags);
auto [funcs, funcsmeta] = get_departure_function_matrix(depcollection, BIPcollection, identifiers, flags);
auto [betaT, gammaT, betaV, gammaV] = reducing::get_BIP_matrices(BIPcollection, identifiers, flags, Tc, vc);
Ian Bell
committed
nlohmann::json meta = {
{"pures", pureJSON},
{"mix", funcsmeta},
};
auto redfunc = ReducingFunctions(std::move(MultiFluidReducingFunction(betaT, gammaT, betaV, gammaV, Tc, vc)));
Ian Bell
committed
Ian Bell
committed
std::move(redfunc),
CorrespondingStatesContribution(std::move(EOSs)),
DepartureContribution(std::move(F), std::move(funcs))
Ian Bell
committed
);
model.set_meta(meta.dump(1));
return model;
Ian Bell
committed
}
/// A builder function where the JSON-formatted strings are provided explicitly rather than file paths
inline auto build_multifluid_JSONstr(const std::vector<std::string>& componentJSON, const std::string& BIPJSON, const std::string& departureJSON, const nlohmann::json& flags = {}) {
// Mixture things
const auto BIPcollection = nlohmann::json::parse(BIPJSON);
const auto depcollection = nlohmann::json::parse(departureJSON);
// Pure fluids
std::vector<nlohmann::json> pureJSON;
for (auto& c : componentJSON) {
pureJSON.emplace_back(nlohmann::json::parse(c));
}
return _build_multifluid_model(pureJSON, BIPcollection, depcollection, flags);
}
inline auto build_multifluid_model(const std::vector<std::string>& components, const std::string& coolprop_root, const std::string& BIPcollectionpath = {}, const nlohmann::json& flags = {}, const std::string& departurepath = {}) {
std::string BIPpath = (BIPcollectionpath.empty()) ? coolprop_root + "/dev/mixtures/mixture_binary_pairs.json" : BIPcollectionpath;
const auto BIPcollection = load_a_JSON_file(BIPpath);
Ian Bell
committed
std::string deppath = (departurepath.empty()) ? coolprop_root + "/dev/mixtures/mixture_departure_functions.json" : departurepath;
const auto depcollection = load_a_JSON_file(deppath);
Ian Bell
committed
Ian Bell
committed
std::vector<nlohmann::json> pureJSON;
try {
// Try the normal lookup, matching component name to a file in dev/fluids (case sensitive match on linux!)
pureJSON = collect_component_json(components, coolprop_root);
}
catch(...){
// Lookup the absolute paths for each component
auto aliasmap = build_alias_map(coolprop_root);
std::vector<std::string> abspaths;
for (auto c : components) {
// Allow matching of absolute paths first
if (std::filesystem::is_regular_file(c)) {
abspaths.push_back(c);
}
else {
abspaths.push_back(aliasmap[c]);
}
Ian Bell
committed
}
// Backup lookup with absolute paths resolved for each component
pureJSON = collect_component_json(abspaths, coolprop_root);
}
Ian Bell
committed
return _build_multifluid_model(pureJSON, BIPcollection, depcollection, flags);
}
/**
* \brief Load a model from a JSON data structure
*
* Required fields are: components, BIP, departure
*
* BIP and departure can be either the data in JSON format, or a path to file with those contents
* components is an array, which either contains the paths to the JSON data, or the file path
*/
inline auto multifluidfactory(const nlohmann::json& spec) {
auto JSON_from_path_or_contents = [](const nlohmann::json &path_or_contents) -> nlohmann::json {
if (path_or_contents.is_string()) {
return load_a_JSON_file(path_or_contents.get<std::string>());
}
else {
return path_or_contents;
}
};
auto components = spec.at("components");
auto depcollection = JSON_from_path_or_contents(spec.at("departure"));
auto BIPcollection = JSON_from_path_or_contents(spec.at("BIP"));
nlohmann::json flags = (spec.contains("flags")) ? spec.at("flags") : nlohmann::json();
// Pure components
std::vector<nlohmann::json> pureJSON;
for (auto c : components) {
pureJSON.push_back(JSON_from_path_or_contents(c));
}
return _build_multifluid_model(pureJSON, BIPcollection, depcollection, flags);
}
/// An overload of multifluidfactory that takes in a string
inline auto multifluidfactory(const std::string& specstring) {
return multifluidfactory(nlohmann::json::parse(specstring));
}
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
//class DummyEOS {
//public:
// template<typename TType, typename RhoType> auto alphar(TType tau, const RhoType& delta) const { return tau * delta; }
//};
//class DummyReducingFunction {
//public:
// template<typename MoleFractions> auto get_Tr(const MoleFractions& molefracs) const { return molefracs[0]; }
// template<typename MoleFractions> auto get_rhor(const MoleFractions& molefracs) const { return molefracs[0]; }
//};
//inline auto build_dummy_multifluid_model(const std::vector<std::string>& components) {
// std::vector<DummyEOS> EOSs(2);
// std::vector<std::vector<DummyEOS>> funcs(2); for (auto i = 0; i < funcs.size(); ++i) { funcs[i].resize(funcs.size()); }
// std::vector<std::vector<double>> F(2); for (auto i = 0; i < F.size(); ++i) { F[i].resize(F.size()); }
//
// struct Fwrapper {
// private:
// const std::vector<std::vector<double>> F_;
// public:
// Fwrapper(const std::vector<std::vector<double>> &F) : F_(F){};
// auto operator ()(std::size_t i, std::size_t j) const{ return F_[i][j]; }
// };
// auto ff = Fwrapper(F);
// auto redfunc = DummyReducingFunction();
// return MultiFluid(std::move(redfunc), std::move(CorrespondingStatesContribution(std::move(EOSs))), std::move(DepartureContribution(std::move(ff), std::move(funcs))));
//}
//inline void test_dummy() {
// auto model = build_dummy_multifluid_model({ "A", "B" });
// std::valarray<double> rhovec = { 1.0, 2.0 };
// auto alphar = model.alphar(300.0, rhovec);
//}